Displaying all 11 publications

Abstract:
Sort:
  1. Omar L, Ahmed OH, Ab Majid NM
    ScientificWorldJournal, 2015;2015:574201.
    PMID: 25793220 DOI: 10.1155/2015/574201
    Improper use of urea may cause environmental pollution through NH3 volatilization and NO3 (-) leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4 (+) and NO3 (-) release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4 (+) and NO3 (-) losses from urea. Bekenu Series soil (Typic Paleudults) was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4 (+) and NO3 (-) release from urea (soil incubation study) compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3 (-) leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4 (+) retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4 (+) and NO3 (-) release from urea.
  2. Ch'ng HY, Ahmed OH, Majid NM
    ScientificWorldJournal, 2014;2014:506356.
    PMID: 25032229 DOI: 10.1155/2014/506356
    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.
  3. Azmi N, Hashim P, Hashim DM, Halimoon N, Majid NM
    Asian Pac J Trop Biomed, 2014 May;4(Suppl 1):S348-52.
    PMID: 25183109 DOI: 10.12980/APJTB.4.2014C1166
    To examine whether earthworms of Eisenia fetida, Lumbricus rubellus and Eudrilus eugeniae extracts have elastase, tyrosinase and matrix metalloproteinase-1 (MMP-1) inhibitory activity.
  4. Palanivell P, Susilawati K, Ahmed OH, Majid NM
    ScientificWorldJournal, 2013;2013:276235.
    PMID: 24319353 DOI: 10.1155/2013/276235
    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation.
  5. Ch'ng HY, Ahmed OH, Majid NM
    ScientificWorldJournal, 2011;11:532-45.
    PMID: 21403973 DOI: 10.1100/tsw.2011.54
    Logging and poor shifting cultivation negatively affect initial soil carbon (C) storage, especially at the initial stage of deforestation, as these practices lead to global warming. As a result, an afforestation program is needed to mitigate this problem. This study assessed initial soil C buildup of rehabilitated forests using Fourier transform infrared (FTIR) spectroscopy. The relatively high E4/E6 values of humic acids (HAs) in the rehabilitated forest indicate prominence of aliphatic components, suggesting that the HAs were of low molecular weight. The total acidity, carboxylic (-COOH) and phenolic (-OH) of the rehabilitated forest were found to be consistent with the ranges reported by other researchers. The spectra of all locations were similar because there was no significant difference in the quantities of C in humic acids (CHA) regardless of forest age and soil depth. The spectra showed distinct absorbance at 3290, 1720, 1630, 1510, 1460, 1380, and 1270 cm-1. Increase of band at 1630 and 1510 cm-1 from 0-20 to 40-60 cm were observed, suggesting C buildup from the lowest depths 20-40 and 40-60 cm. However, the CHA content in the soil depths was not different. The band at 1630 cm-1 was assigned to carboxylic and aromatic groups. Increase in peak intensity at 1510 cm-1 was because C/N ratio increased with increasing soil depth. This indicates that decomposition rate decreased with increasing soil depth and decreased with CHA. The finding suggests that FTIR spectroscopy enables the assessment of C composition functional group buildup at different depths and ages.
  6. Haruna Ahmed O, Aainaa Hasbullah N, Ab Majid NM
    ScientificWorldJournal, 2010 Oct 12;10:1988-95.
    PMID: 20953548 DOI: 10.1100/tsw.2010.196
    The world's tropical rainforests are decreasing at an alarming rate as they are converted to agricultural land, pasture, and plantations. Decreasing tropical forests affect global warming. As a result, afforestation progams have been suggested to mitigate this problem. The objective of this study was to determine the carbon and phosphorus accumulation of a rehabilitated forest of different ages. The size of the study area was 47.5 ha. Soil samples were collected from the 0-, 6-, 12-, and 17-year-old rehabilitated forest. Twenty samples were taken randomly with a soil auger at depths of 0-20 and 20-40 cm. The procedures outlined in the Materials and Methods section were used to analyze the soil samples for pH, total C, organic matter, total P, C/P ratio, yield of humic acid (HA), and cation exchange capacity (CEC). The soil pH decreased significantly with increasing age of forest rehabilitation regardless of depth. Age did not affect CEC of the rehabilitated forest. Soil organic matter (SOM), total C, and total P contents increased with age. However, C/P ratio decreased with time at 0-20 cm. Accumulation of HA with time and soil depth was not consistent. The rehabilitated forest has shown signs of being a C and P sink.
  7. Latifah O, Ahmed OH, Susilawati K, Majid NM
    Waste Manag Res, 2015 Apr;33(4):322-31.
    PMID: 25819928 DOI: 10.1177/0734242X15576771
    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives.
  8. Nur Aainaa H, Haruna Ahmed O, Ab Majid NM
    PLoS One, 2018;13(9):e0204401.
    PMID: 30261005 DOI: 10.1371/journal.pone.0204401
    Efficient management of P fertilizers ensures good yield of crops and adequate food supply. In the acid soil of the tropics, soluble P is fixed by Al and Fe. Exploitation of the high CEC and pH of Clinoptilolite zeolite (CZ) could mitigate low soil pH and P fixation in acid soils. This study was undertaken to determine the effects of amending a weathered acid soil with CZ on: (i) soil P availability and other related soil chemical properties, and (ii) nutrient concentration, nutrient uptake, above-ground biomass, agronomic efficiency, and yield of Zea mays L. on a tropical acidic soil. Triple superphosphate (TSP), Egypt Rock phosphate (ERP), and Christmas Island Rock phosphate (CIRP) were used as P sources. The treatments evaluated were: (i) soil alone, (ii) 100% recommended fertilizer rate (NPK), and (iii) 75% fertilizer rate + Clinoptilolite zeolite. Selected soil chemical properties and P availability were determined before and after field trials. Zea mays L. above-ground biomass, nutrient concentration, nutrient uptake, agronomic efficiency, and fresh cob yield were also determined. Results revealed that the effects of treatments with and without CZ treatments on soil pH, P fractions, soil acidity, dry matter production, yield of maize, nutrient uptake, and agronomic efficiency were similar. Hence, suggesting CZ inclusion in the fertilization program of Zea mays L is beneficial in terms of reducing excessive or unbalanced use of chemical fertilizers due to reduction of fertilizers usage by 25%.
  9. Karam DS, Arifin A, Radziah O, Shamshuddin J, Majid NM, Hazandy AH, et al.
    ScientificWorldJournal, 2012;2012:641346.
    PMID: 22606055 DOI: 10.1100/2012/641346
    Deforestation leads to the deterioration of soil fertility which occurs rapidly under tropical climates. Forest rehabilitation is one of the approaches to restore soil fertility and increase the productivity of degraded areas. The objective of this study was to evaluate and compare soil biological properties under enrichment planting and secondary forests at Tapah Hill Forest Reserve, Perak after 42 years of planting. Both areas were excessively logged in the 1950s and left idle without any appropriate forest management until 1968 when rehabilitation program was initiated. Six subplots (20 m × 20 m) were established within each enrichment planting (F1) and secondary forest (F2) plots, after which soil was sampled at depths of 0-15 cm (topsoil) and 15-30 cm (subsoil). Results showed that total mean microbial enzymatic activity, as well as biomass C and N content, was significantly higher in F1 compared to F2. The results, despite sample variability, suggest that the rehabilitation program improves the soil biological activities where high rate of soil organic matter, organic C, N, suitable soil acidity range, and abundance of forest litter is believed to be the predisposing factor promoting higher population of microbial in F1 as compared to F2. In conclusion total microbial enzymatic activity, biomass C and biomass N evaluation were higher in enrichment planting plot compared to secondary forest. After 42 years of planting, rehabilitation or enrichment planting helps to restore the productivity of planted forest in terms of biological parameters.
  10. Ahmed OH, Hussin A, Ahmad HM, Rahim AA, Majid NM
    ScientificWorldJournal, 2008 Apr 20;8:394-9.
    PMID: 18454247 DOI: 10.1100/tsw.2008.68
    Ammonia loss significantly reduces the urea-N use efficiency in crop production. Efforts to reduce this problem are mostly laboratory oriented. This paper reports the effects of urea amended with triple superphosphate (TSP) and zeolite (Clinoptilolite) on soil pH, nitrate, exchangeable ammonium, dry matter production, N uptake, fresh cob production, and urea-N uptake efficiency in maize (Zea mays) cultivation on an acid soil in actual field conditions. Urea-amended TSP and zeolite treatments and urea only (urea without additives) did not have long-term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf) production of Swan (test crop). All the treatments had no significant effect on urea-N concentration in the leaf and stem of the test crop. In terms of urea-N uptake in the leaf and stem tissues of Swan, only the treatment with the highest amount of TSP and zeolite significantly increased urea-N uptake in the leaf of the test crop. Irrespective of treatment, fresh cob production was statistically not different. However, all the treatments with additives improved urea-N uptake efficiency compared to urea without additives or amendment. This suggests that urea amended with TSP and zeolite has a potential of reducing ammonia loss from surface-applied urea.
  11. Palanivell P, Ahmed OH, Ab Majid NM, Jalloh MB, Susilawati K
    ScientificWorldJournal, 2015;2015:906094.
    PMID: 25977938 DOI: 10.1155/2015/906094
    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links