Displaying all 6 publications

Abstract:
Sort:
  1. Bakker MJ, van Dijk JG, Pramono A, Sutarni S, Tijssen MA
    Mov Disord, 2013 Mar;28(3):370-9.
    PMID: 23283702 DOI: 10.1002/mds.25280
    The nature of culture-specific startles syndromes such as "Latah" in Indonesia and Malaysia is ill understood. Hypotheses concerning their origin include sociocultural behavior, psychiatric disorders, and neurological syndromes. The various disorders show striking similarities despite occurring in diverse cultural settings and genetically distant populations. They are characterized clinically by exaggerated startle responses and involuntary vocalizations, echolalia, and echopraxia. Quantifying startle reflexes may help define Latah within the 3 groups of startle syndromes: (1) hyperekplexia, (2) startle-induced disorders, and (3) neuropsychiatric startle syndromes. Twelve female Latah patients (mean age, 44.6 years; SD, 7.7 years) and 12 age-, sex- and socioeconomically matched controls (mean age, 42.3 year; SD, 8.0) were studied using structured history taking and neurological examination including provocation of vocalizations, echolalia, and echopraxia. We quantified auditory startle reflexes with electromyographic activity of 6 left-sided muscles following 104-dB tones. We defined 2 phases for the startle response: a short latency motor startle reflex initiated in the lower brain stem <100/120 ms) and a later, second phase more influenced by psychological factors (the "orienting reflex," 100/120-1000 ms after the stimulus). Early as well as late motor startle responses were significantly increased in patients compared with controls (P ≤ .05). Following their startle response, Latah patients showed stereotyped responses including vocalizations and echo phenomena. Startle responses were increased, but clinically these proved insignificant compared with the stereotyped behavioral responses following the startle response. This study supports the classification of Latah as a "neuropsychiatric startle syndrome."
  2. Marina AM, Man YB, Nazimah SA, Amin I
    Int J Food Sci Nutr, 2009;60 Suppl 2:114-23.
    PMID: 19115123 DOI: 10.1080/09637480802549127
    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.
  3. Shirmanova MV, Lukina MM, Sirotkina MA, Shimolina LE, Dudenkova VV, Ignatova NI, et al.
    Int J Mol Sci, 2024 Jan 30;25(3).
    PMID: 38338976 DOI: 10.3390/ijms25031703
    This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging. Oxygen content was assessed using phosphorescence lifetime macro-imaging with an oxygen-sensitive probe. For visualization of the perfused microvasculature, an optical coherence tomography-based angiography was used. It was found that PDT induces different alterations in cellular metabolism, depending on the degree of oxygen depletion. Moderate decrease in oxygen in the case of KillerRed was accompanied by an increase in the fraction of free NAD(P)H, an indicator of glycolytic switch, early after the treatment. Severe hypoxia after PDT with Photoditazine resulted from a vascular shutdown yielded in a persistent increase in protein-bound (mitochondrial) fraction of NAD(P)H. These findings improve our understanding of physiological mechanisms of PDT in cellular and vascular modes and can be useful to develop new approaches to monitoring its efficacy.
  4. Balabushevich NG, Maltseva LN, Filatova LY, Mosievich DV, Mishin PI, Bogomiakova ME, et al.
    Heliyon, 2024 Jul 15;10(13):e33801.
    PMID: 39027545 DOI: 10.1016/j.heliyon.2024.e33801
    Co-precipitation of biopolymers into calcium carbonate crystals changes their physicochemical and biological properties. This work studies hybrid microcrystals of vaterite obtained in the presence of natural polysaccharides, as carriers for the delivery of proteins and enzymes. Hybrid microcrystals with dextran sulfate, chondroitin sulfate, heparin, fucoidan, and pectin were obtained and compared. The impact of polysaccharides on the morphology (particle diameter, surface area, nanocrystallite and pore size), polysaccharide content and surface charge of hybrid microcrystals was studied. Only microcrystals with fucoidan and heparin exhibited antioxidant activity against •ОН radical. The surface charge and pore size of the hybrid microcrystals affected the sorption of albumin, catalase, chymotrypsin, mucin. A decrease in the catalytic constant and Michaelis constant was observed for catalase sorbed on the hybrid crystals. The biocompatibility of microcrystals depended on the nature of the included polysaccharide: crystals with sulfated polysaccharides increased blood plasma coagulation but not platelet aggregation, and crystals with dextran sulfate had the greatest cytotoxicity against HT-29 cells but not erythrocytes. Hybrid microcrystals with all polysaccharides except chondroitin sulfate reduced erythrocyte lysis in vitro compared with vaterite crystals. The obtained results enable to create novel carriers based on hybrid vaterite crystals with polysaccharides, beneficial for the delivery of protein drugs.
  5. Cardoso F, Goetz CG, Mestre TA, Sampaio C, Adler CH, Berg D, et al.
    Mov Disord, 2024 Feb;39(2):259-266.
    PMID: 38093469 DOI: 10.1002/mds.29683
  6. Roos A, van der Ven PFM, Alrohaif H, Kölbel H, Heil L, Della Marina A, et al.
    Brain, 2023 Oct 03;146(10):4200-4216.
    PMID: 37163662 DOI: 10.1093/brain/awad152
    Filamin-A-interacting protein 1 (FILIP1) is a structural protein that is involved in neuronal and muscle function and integrity and interacts with FLNa and FLNc. Pathogenic variants in filamin-encoding genes have been linked to neurological disorders (FLNA) and muscle diseases characterized by myofibrillar perturbations (FLNC), but human diseases associated with FILIP1 variants have not yet been described. Here, we report on five patients from four unrelated consanguineous families with homozygous FILIP1 variants (two nonsense and two missense). Functional studies indicated altered stability of the FILIP1 protein carrying the p.[Pro1133Leu] variant. Patients exhibit a broad spectrum of neurological symptoms including brain malformations, neurodevelopmental delay, muscle weakness and pathology and dysmorphic features. Electron and immunofluorescence microscopy on the muscle biopsy derived from the patient harbouring the homozygous p.[Pro1133Leu] missense variant revealed core-like zones of myofibrillar disintegration, autophagic vacuoles and accumulation of FLNc. Proteomic studies on the fibroblasts derived from the same patient showed dysregulation of a variety of proteins including FLNc and alpha-B-crystallin, a finding (confirmed by immunofluorescence) which is in line with the manifestation of symptoms associated with the syndromic phenotype of FILIP1opathy. The combined findings of this study show that the loss of functional FILIP1 leads to a recessive disorder characterized by neurological and muscular manifestations as well as dysmorphic features accompanied by perturbed proteostasis and myopathology.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links