Displaying all 5 publications

Abstract:
Sort:
  1. Zambry NS, Ayoib A, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2017 Jul;40(7):1007-1016.
    PMID: 28389850 DOI: 10.1007/s00449-017-1764-4
    The present study focused on developing a wild-type actinomycete isolate as a model for a non-pathogenic filamentous producer of biosurfactants. A total of 33 actinomycetes isolates were screened and their extracellular biosurfactants production was evaluated using olive oil as the main substrate. Out of 33 isolates, 32 showed positive results in the oil spreading technique (OST). All isolates showed good emulsification activity (E24) ranging from 84.1 to 95.8%. Based on OST and E24 values, isolate R1 was selected for further investigation in biosurfactant production in an agitated submerged fermentation. Phenotypic and genotypic analyses tentatively identified isolate R1 as a member of the Streptomyces genus. A submerged cultivation of Streptomyces sp. R1 was carried out in a 3-L stirred-tank bioreactor. The influence of impeller tip speed on volumetric oxygen transfer coefficient (k L a), growth, cell morphology and biosurfactant production was observed. It was found that the maximum biosurfactant production, indicated by the lowest surface tension measurement (40.5 ± 0.05 dynes/cm) was obtained at highest k L a value (50.94 h-1) regardless of agitation speed. The partially purified biosurfactant was obtained at a concentration of 7.19 g L-1, characterized as a lipopeptide biosurfactant and was found to be stable over a wide range of temperature (20-121 °C), pH (2-12) and salinity [5-20% (w/v) of NaCl].
  2. Nasir MS, Mohd Yahya AR, Md Noh NA
    Trop Life Sci Res, 2024 Mar;35(1):33-47.
    PMID: 39262861 DOI: 10.21315/tlsr2024.35.1.3
    Rhamnolipid has gained much attention in various fields owing to its distinctive functional properties compared to conventional chemical surfactants, which are mostly derived from petroleum feedstock. Production cost is one of the main challenges in rhamnolipid production, particularly when using refined substrates. One possible solution is to use agro-industrial wastes as substrates for rhamnolipid production. This is a promising strategy due to their abundance and commercially low value, while simultaneously alleviating an agro-industrial waste management problem in the environment. This study aims to evaluate agro-industrial wastes from local crops as possible low-cost alternative substrates for rhamnolipid production by a local isolate, Pseudomonas aeruginosa USM-AR2. Various liquid wastes, namely sugarcane molasses, rice washing water, overly mature coconut (OMC) water, empty fruit bunch (EFB) steam effluent, palm sludge oil (PSO) and palm oil mill effluent (POME) were screened as the main carbon source supplementing mineral salt medium (MSM) in the fermentation of P. aeruginosa USM-AR2. Batch fermentation was carried out in a shake flask system, agitated at 200 rpm and incubated at room temperature, 27 ± 2°C for 120 h. Among the substrates tested, PSO exhibited the highest biomass at 20.78 g/L and rhamnolipid production at 1.07 g/L. This study has shown the potential of agro-industrial wastes in Malaysia as an alternative resource for rhamnolipid production, transforming them into value added products, while reducing the amount of wastes discharged into the environment.
  3. Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2021 Jul;44(7):1577-1592.
    PMID: 33687550 DOI: 10.1007/s00449-021-02543-5
    The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
  4. Idris MO, Mohamad Ibrahim MN, Md Noh NA, Yaqoob AA, Hussin MH, Mohamad Shukri IA, et al.
    Chemosphere, 2023 Nov;340:139985.
    PMID: 37640217 DOI: 10.1016/j.chemosphere.2023.139985
    Naphthalene is a very common and hazardous environmental pollutant, and its biodegradation has received serious attention. As demonstrated in this study, naphthalene-contaminated wastewater can be biodegraded using a microbial fuel cell (MFC). Furthermore, the potential of MFC for electricity generation appears to be a promising technology to meet energy demands other than those produced from fossil fuels. Nowadays, efforts are being made to improve the overall performance of MFC by integrating biowaste materials for anode fabrication. In this study, palm kernel shell waste was used to produce palm kernel shell-derived graphene oxide (PKS-GO) and palm kernel shell-derived reduced graphene oxide (PKS-rGO), which were then fabricated into anode electrodes to improve the system's electron mobilization and transport. The MFC configuration with the PKS-rGO anode demonstrated greater energy production potential, with a maximum power density of 35.11 mW/m2 and a current density of 101.76 mA/m2, compared to the PKS-GO anode, which achieved a maximum power density of 17.85 mW/m2 and a current density of 72.56 mA/m2. Furthermore, there is simultaneous naphthalene biodegradation with energy production, where the biodegradation efficiency of naphthalene with PKS-rGO and PKS-GO is 85.5%, and 79.7%, respectively. In addition, the specific capacitance determined from the cyclic voltammetry curve revealed a value for PKS-rGO of 2.23 × 10-4 F/g, which is also higher than the value for PKS-GO (1.57 × 10-4 F/g) on the last day of operation. Anodic microbial analysis shows that electrogens thrive in the MFC process. Finally, a comparison with previous literature and the future prospects of the study are also presented.
  5. Murugaiah H, Teh CL, Loh KC, Mohamad Yahya AR, Md Noh NA, Abu Bakar NHH, et al.
    Molecules, 2021 Oct 24;26(21).
    PMID: 34770823 DOI: 10.3390/molecules26216414
    Here, we report the extracellular biosynthesis of silver nanoparticles (AgNPs) and determination of their antibacterial and anticancer properties. We also explore the efficacy of bioAgNPs incorporated in cellulose nanocrystals (CNCs) and alginate (Alg) for the formation of an antibacterial hydrogel film. Streptomyces sp. PBD-311B was used for the biosynthesis of AgNPs. The synthesized bioAgNPs were characterized using UV-Vis spectroscopy, TEM, XRD, and FTIR analysis. Then, the bioAgNPs' antibacterial and anticancer properties were determined using TEMA and cytotoxicity analysis. To form the antibacterial hydrogel film, bioAgNPs were mixed with a CNC and Alg solution and further characterized using FTIR analysis and a disc diffusion test. The average size of the synthesized bioAgNPs is around 69 ± 2 nm with a spherical shape. XRD analysis confirmed the formation of silver nanocrystals. FTIR analysis showed the presence of protein capping at the bioAgNP surface and could be attributed to the extracellular protein binding to bioAgNPs. The MIC value of bioAgNPs against P. aeruginosa USM-AR2 and MRSA was 6.25 mg/mL and 3.13 mg/mL, respectively. In addition, the bioAgNPs displayed cytotoxicity effects against cancer cells (DBTRG-0.5MG and MCF-7) and showed minimal effects against normal cells (SVG-p12 and MCF-10A), conferring selective toxicity. Interestingly, the bioAgNPs still exhibited inhibition activity when incorporated into CNC/Alg, which implies that the hydrogel film has antibacterial properties. It was also found that bioAgNP-CNC/Alg displayed a minimal or slow release of bioAgNPs owing to the intermolecular interaction and the hydrogel's properties. Overall, bioAgNP-CNC/Alg is a promising antibacterial hydrogel film that showed inhibition against the pathogenic bacteria P. aeruginosa and MRSA and its application can be further evaluated for the inhibition of cancer cells. It showed benefits for surgical resection of a tumor to avoid post-operative wound infection and tumor recurrence at the surgical site.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links