We investigated the association of the HLA genes in Malaysian patients with systemic lupus erythematosus (SLE) and their associations with the clinical manifestations in 160 SLE patients (99 Chinese and 61 Malays) and 107 healthy control individuals (58 Chinese and 49 Malays) were studied. Sequence specific primer amplification (PCR-SSP) phototyping techniques were used to analyse 25 HLA-A allele groups, 31 HLA-DR allele groups and 9 HLA-DQ allele groups. Appreciable increases in allele frequencies of HLA-A*11, DRB1*0701, DRB1*1601-1606, DRB5*01-02 and DQB1*05, and decrease in HLA-DRB1*1101-1121, 1411, DRB1*1201-3, DRB1*1301-22, DRB3*0101, 0201, 0202, 0203, 0301 and DQB1*0301, 1304 in SLE patients compared with healthy control individuals. However, after Bonferroni correction (p(c)<0.05) only HLA-A*1101, 1102, DRB5*01-02, DQB1*05, DRB1*1201-3, DRB3*0101, 0201, 0202, 0203, 0301 and DQB1*0301, 0304 remained significant. Allele frequencies of DRB1*0701 and DRB4*0101101, 0102, 0103, DQB1*05, DRB1*1301-22, DRB3*0101, 0201, 0202, 0203, 0301 and DQB1*0301, 0304 were significantly increased in Malay SLE patients compared with healthy control individuals. In contrast, Chinese SLE patients had increased allele frequencies of DRB1*1601-1606, DQB1*05, DRB1*1201-3, DRB3*0101, 0201, 0202, 0203, 0301, DRB3*0101, 0201, 0202, 0203, 0301 and DQB1*0301, 0304 compared with healthy control individuals. HLA-A*6801-02 and DRB1*1601-1606 frequencies appeared elevated in a subset of patients with serositis and DRB1* 0401-1122 frequency was elevated in those displaying neurologic disorder. However, unequivocal evidence of these associations would require investigation of substantially larger cohorts. On the whole, our findings suggest that HLA allele associations with SLE are race specific in Malays and Chinese.
Study site: SLE clinic, University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
Metroxylon sagu Rottb. or locally known as sago palm is a tropical starch crop grown for starch production in commercial plantations in Malaysia, especially in Sarawak, East Malaysia. This plant species accumulate the highest amount of edible starch compared to other starch-producing crops. However, the non-trunking phenomenon has been observed to be one of the major issues restricting the yield of sago palm starch. In this study, proteomics approach was utilised to discover differences between trunking and non-trunking proteomes in sago palm leaf tissues. Total protein from 16 years old trunking and non-trunking sago palm leaves from deep peat area were extracted with PEG fractionation extraction method and subjected to two-dimensional gel electrophoresis (2D PAGE). Differential protein spots were subjected to MALDI-ToF/ToF MS/MS. Proteomic analysis has identified 34 differentially expressed proteins between trunking and non-trunking sago samples. From these protein spots, all 19 proteins representing different enzymes and proteins have significantly increased in abundance in non-trunking sago plant when subjected to mass spectrometry. The identified proteins mostly function in metabolic pathways including photosynthesis, tricarboxylic acid cycle, glycolysis, carbon utilization and oxidative stress. The current study indicated that the several proteins identified through differentially expressed proteome contributed to physical differences in trunking and non-trunking sago palm.
Microbial-based fertilizer has been widely used as a healthier and better alternative to agrochemical products. However, the effects of biofertilizers on the rhizospheric microbiota has rarely been investigated. Thus, the aim of this study was to investigate the effects of symbiotic fungus Trichoderma asperellum SL2-based inoculant on the soil bacterial population through next generation sequencing using a metabarcoding approach. The treatment plots were treated with T. asperellum SL2 spore suspension, while the control plots were treated with sterilized distilled water. The results showed similar bacterial microbiome profiles in the soil of control and T. asperellum SL2-treated plots. In conclusion, the application of the T. asperellum SL2 inoculant had not exerted a negative impact towards the bacterial population as similar observation was reflected in control plots. Nonetheless, future research should be conducted to investigate the effects of repeated application of T. asperellum SL2 over a longer period on the rice microbiota communities.
Basal stem rot is a common disease that affects oil palm, causing loss of yield and finally killing the trees. The disease, caused by fungus Ganoderma boninense, devastates thousands of hectares of oil palm plantings in Southeast Asia every year. In the present study, root proteins of healthy oil palm seedlings, and those infected with G. boninense, were analyzed by 2-dimensional gel electrophoresis (2-DE). When the 2-DE profiles were analyzed for proteins, which exhibit consistent significant change of abundance upon infection with G. boninense, 21 passed our screening criteria. Subsequent analyses by mass spectrometry and database search identified caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, enolase, fructokinase, cysteine synthase, malate dehydrogenase, and ATP synthase as among proteins of which abundances were markedly altered.
Panduratin A extracted from Boesenbergia rotunda is a flavonoid reported to possess a range of medicinal indications which include anti-dengue, anti-HIV, anti-cancer, antioxidant and anti-inflammatory properties. Boesenbergia rotunda is a plant from the Zingiberaceae family commonly used as a food ingredient and traditional medicine in Southeast Asia and China. Reports on the health benefits of secondary metabolites extracted from Boesenbergia rotunda over the last few years has resulted in rising demands for panduratin A. However large scale extraction has been hindered by the naturally low abundance of the compound and limited knowledge of its biosynthetic pathway.
Boesenbergia rotunda (Zingiberaceae), is a high-value culinary and ethno-medicinal plant of Southeast Asia. The rhizomes of this herb have a high flavanone and chalcone content. Here we report the genome analysis of B. rotunda together with a complete genome sequence as a hybrid assembly. B. rotunda has an estimated genome size of 2.4 Gb which is assembled as 27,491 contigs with an N50 size of 12.386 Mb. The highly heterozygous genome encodes 71,072 protein-coding genes and has a 72% repeat content, with class I TEs occupying ~67% of the assembled genome. Fluorescence in situ hybridization of the 18 chromosome pairs at the metaphase showed six sites of 45S rDNA and two sites of 5S rDNA. An SSR analysis identified 238,441 gSSRs and 4604 EST-SSRs with 49 SSR markers common among related species. Genome-wide methylation percentages ranged from 73% CpG, 36% CHG and 34% CHH in the leaf to 53% CpG, 18% CHG and 25% CHH in the embryogenic callus. Panduratin A biosynthetic unigenes were most highly expressed in the watery callus. B rotunda has a relatively large genome with a high heterozygosity and TE content. This assembly and data (PRJNA71294) comprise a source for further research on the functional genomics of B. rotunda, the evolution of the ginger plant family and the potential genetic selection or improvement of gingers.
Mature coconut water (MCW) has been demonstrated to contain bioactive compounds with antioxidant properties. In vivo research showed that MCW supplementation increased semen quality in rats, suggesting that it may boost reproductive performance. This study investigated the impact of MCW on the reproduction of Boer bucks. Two groups of 12 sexually mature bucks were given either plain water (control) or MCW at 5 mL/kg of body weight daily for 60 days. Sexual behaviors were studied using the focal observation technique, whereas semen was collected for quality assessment. Oxidative stress markers, namely, malondialdehyde (MDA) and glutathione (GSH), along with reproductive hormones, specifically luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone, were quantified in blood serum samples via enzyme-linked immunosorbent assay (ELISA). The oxidative stress analysis showed elevated GSH and reduced MDA levels, accompanied by enhanced sperm quality, including superior motility, concentration, viability, and fewer morphological abnormalities (p