Displaying all 8 publications

Abstract:
Sort:
  1. Zamri AA, Ong MY, Nomanbhay S, Show PL
    Environ Res, 2021 06;197:111204.
    PMID: 33894238 DOI: 10.1016/j.envres.2021.111204
    The composition of carbon dioxide (CO2) is increasing day by day in the Earth's atmosphere. Worldwide energy demand is now increasing, and this has led to an increase in the percentage of global carbon emission. Moreover, this phenomenon can occur from the careless use of heating systems, generators and especially transportation, therefore, the release of these gases will continue to be widespread if there is no solution. Interaction within the microwave plasma-based gasification system of synthetic natural gas (syngas) production is presented in this paper. Consequently, this reduces the high concentrations of methane and carbon dioxide emission in our atmosphere. Syngas is very useful products that can be used as a source of energy such as fuel production and fuel source. The overview and basic theory about gasification process and microwave plasma technology are provided. Modelling of the microwave plasma system particularly on its application of system electromagnetic field inside waveguide of plasma reactor to produce microwave plasma and how it was calculated are presented in this paper. To recapitulate, the global challenges on the rising of greenhouse gases volume can be regulated with microwave plasma technology and its important aspects have been underlined.
  2. Abdul Latif NS, Ong MY, Nomanbhay S
    Eng Life Sci, 2019 Apr;19(4):246-269.
    PMID: 32625006 DOI: 10.1002/elsc.201800144
    Currently, fossil materials form the majority of our energy and chemical source. Many global concerns force us to rethink about our current dependence on the fossil energy. Limiting the use of these energy sources is a key priority for most countries that pledge to reduce greenhouse gas emissions. The application of biomass, as substitute fossil resources for producing biofuels, plastics and chemicals, is a widely accepted strategy for sustainable development. Aquatic plants including algae possess competitive advantages as biomass resources compared to the terrestrial plants in this current global situation. Bio-oil production from algal biomass is technically and economically viable, cost competitive, requires no capacious lands and minimal water use and reduces atmospheric carbon dioxide. The aim of this paper is to review the potential of converting algal biomass, as an aquatic plant, into high-quality crude bio-oil through applicable processes in Malaysia. In particular, bio-based materials and fuels from algal biomass are considered as one of the reliable alternatives for clean energy. Currently, pyrolysis and hydrothermal liquefaction (HTL) are two foremost processes for bio-oil production from biomass. HTL can directly convert high-moisture algal biomass into bio-oil, whereas pyrolysis requires feedstock drying to reduce the energy consumption during the process. Microwave-assisted HTL, which can be conducted in aqueous environment, is suitable for aquatic plants and wet biomass such as algae.
  3. Ghanbariasad A, Taghizadeh SM, Show PL, Nomanbhay S, Berenjian A, Ghasemi Y, et al.
    Bioengineered, 2019 12;10(1):390-396.
    PMID: 31495263 DOI: 10.1080/21655979.2019.1661692
    FeOOH nanoparticles are commonly synthesized at very high temperature and pressure that makes the process energy consuming and non-economic. Recently, novel approaches were developed for the fabrication of these particles at room temperature. But, the main problem with these methods is that the prepared structures are aggregates of ultra-small nanoparticles where no intact separate nanoparticles are formed. In this study, for the first time, secretory compounds from Chlorella vulgaris cells were employed for the controlled synthesis of FeOOH nanoparticles at room atmosphere. Obtained particles were found to be goethite (α-FeO(OH)) crystals. Controlled synthesis of FeOOH nanoparticles resulted in uniform spherical nanoparticles ranging from 8 to 17 nm in diameter with 12.8 nm mean particle size. Fourier-transform infrared and elemental analyses were indicated that controlled synthesized nanoparticles have not functionalized with secretory compounds of C. vulgaris, and these compounds just played a controlling role over the synthesis reaction.
  4. Abdul-Latif NS, Ong MY, Nomanbhay S, Salman B, Show PL
    Bioengineered, 2020 12;11(1):154-164.
    PMID: 32013677 DOI: 10.1080/21655979.2020.1718471
    Carbon dioxide (CO2) emission will increase due to the increasing global plastic demand. Statistical data shows that plastic production alone will contribute to at least 20% of the annual global carbon budget in the near future. Hence, several alternative methods are recommended to overcome this problem, such as bio-product synthesis. Algae consist of diverse species and have huge potential to be a promising biomass feedstock for a range of purposes, including bio-oil production. The convenient cultivation method of algae could be one of the main support for algal biomass utilization. The aim of this study is to forecast and outline the strategies in order to meet the future demand (year 2050) of plastic production and, at the same time, reduce CO2 emission by replacing the conventional plastic with bio-based plastic. In this paper, the analysis for 25%, 50% and 75% CO2 reduction has been done by using carbon emission pinch analysis. The strategies of biomass utilization in Malaysia are also enumerated in this study. This study suggested that the algal biomass found in Malaysia coastal areas should be utilized and cultivated on a larger scale in order to meet the increasing plastic demand and, at the same time, reduce carbon footprint. Some of the potential areas for macroalgae sea-farming cultivation in Sabah coastline (Malaysia), comprised of about 3885 km2 (388,500 ha) in total, have been highlighted. These potential areas have the potential to produce up to 14.5 million tonnes (Mt)/y of macroalgae in total, which can contribute 370 Mt of phenol for bioplastic production.
  5. Pocha CKR, Chia SR, Chia WY, Koyande AK, Nomanbhay S, Chew KW
    Chemosphere, 2022 Mar;290:133246.
    PMID: 34906526 DOI: 10.1016/j.chemosphere.2021.133246
    The ever-growing human population has resulted in the expansion of agricultural activity; evident by the deforestation of rainfoamrests as a means of acquiring fertile land for crops. The crops and fruits produced by such means should be utilized completely; however, there are still losses and under-exploitation of these produces which has resulted in wastes being mounted in landfills. These underutilized agricultural wastes including vegetables and fruits can serve as a potential source for biofuels and green diesel. This paper discusses the main routes (e.g., biological and thermochemical) for producing biofuels such as bioethanol, biodiesel, biogas, bio-oil and green diesel from underutilized crops by emphasizing recent technological innovations for improving biofuels and green diesel yields. The future prospects of a successful production of biofuels and green diesel by this source are also explained. Underutilized lignocelluloses including fruits and vegetables serve as a prospective biofuel and green diesel generation source for the future prosperity of the biofuel industry.
  6. Adnan AI, Ong MY, Mohamed H, Chia SR, Milano J, Nomanbhay S
    Bioresour Technol, 2024 Aug;406:131028.
    PMID: 38914237 DOI: 10.1016/j.biortech.2024.131028
    This study represents the first investigation of bio-succinic acid (bio-SA) production with methane enrichment using carbon-dioxide-fixating bacteria in the co-culture of ragi tapai and macroalgae, Chaetomorpha. Microwave irradiation has also been introduced to enhance the biochemical processes as it could provide rapid and selective heating of substrates. In this research, microwave irradiation was applied on ragi tapai as a pre-treatment process. Factors such as microwave irradiation dose on ragi tapai, Chaetomorpha ratio in the co-culture, and pH value were studied. Optimal conditions were identified using Design-Expert software, resulting in optimal experimental biomethane and bio-SA production of 85.7 % and 0.65 g/L, respectively, at a microwave dose of 1.45 W/g, Chaetomorpha ratio of 0.9 and pH value of 7.8. The study provides valuable insights into microwave control for promoting simultaneous methane enrichment and bio-SA production, potentially reducing costs associated with CO2 capture and storage and biogas upgrading.
  7. Lin CY, Lay CH, Chew KW, Nomanbhay S, Gu RL, Chang SH, et al.
    Chemosphere, 2021 Feb;264(Pt 2):128564.
    PMID: 33065325 DOI: 10.1016/j.chemosphere.2020.128564
    Recently, the production of renewable biogas such as biohydrogen and biomethane from wastewaters through anaerobic fermentation has gained worldwide attention. In the present study, a mobile bioenergy generation station had been constructed based on a high-efficiency hydrogenesis & methanogenesis technology (HyMeTek) developed by Feng Chia University, Taiwan. The substrate was a beverage wastewater having chemical oxygen demand (COD) concentration of 1200 mg/L. This bioenergy station had a feedstock tank (3.8 m3), a nutrient tank (0.8 m3), an acidogenesis tank (AT, 2 m3), two methanogenesis tanks (MT, 4 m3 for each), a membrane bioreactor and a control room. Biogas production rate, methane concentration, COD removal efficiencies, energy efficiency and economical interest of the plant were assessed. The peak total methane production rates for AT (at hydraulic retention time, HRT, 4 h) and MT (at HRT 8 h) were 430 and 7 mL/L·d, respectively. A strategy of shortening HRT was a promising method to enhance biogas quality and energy efficiency. This mobile bioenergy system has commercial potential because it could bring good economic benefit of initial rate of return (58.84%) and payback time (2.68 y).
  8. Leong YS, Ker PJ, Jamaludin MZ, M Nomanbhay S, Ismail A, Abdullah F, et al.
    Sensors (Basel), 2018 Jul 06;18(7).
    PMID: 29986438 DOI: 10.3390/s18072175
    Monitoring the condition of transformer oil is considered to be one of the preventive maintenance measures and it is very critical in ensuring the safety as well as optimal performance of the equipment. Various oil properties and contents in oil can be monitored such as acidity, furanic compounds and color. The current method is used to determine the color index (CI) of transformer oil produces an error of 0.5 in measurement, has high risk of human handling error, additional expense such as sampling and transportations, and limited samples can be measured per day due to safety and health reasons. Therefore, this work proposes the determination of CI of transformer oil using ultraviolet-to-visible (UV-Vis) spectroscopy. Results show a good correlation between the CI of transformer oil and the absorbance spectral responses of oils from 300 nm to 700 nm. Modeled equations were developed to relate the CI of the oil with the cutoff wavelength and absorbance, and with the area under the curve from 360 nm to 600 nm. These equations were verified with another set of oil samples. The equation that describes the relationship between cutoff wavelength, absorbance and CI of the oil shows higher accuracy with root mean square error (RMSE) of 0.1961.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links