METHODS: This study included 344 patients from the Korean Obstructive Lung Disease (KOLD) cohort. External validation was performed on a cohort of 112 patients. In total, 525 chest CT-based radiomics features were semi-automatically extracted. The five most useful features for survival prediction were selected by least absolute shrinkage and selection operation (LASSO) Cox regression analysis and used to generate a RS. The ability of the RS for classifying COPD patients into high or low mortality risk groups was evaluated with the Kaplan-Meier survival analysis and Cox proportional hazards regression analysis.
RESULTS: The five features remaining after the LASSO analysis were %LAA-950, AWT_Pi10_6th, AWT_Pi10_heterogeneity, %WA_heterogeneity, and VA18mm. The RS demonstrated a C-index of 0.774 in the discovery group and 0.805 in the validation group. Patients with a RS greater than 1.053 were classified into the high-risk group and demonstrated worse overall survival than those in the low-risk group in both the discovery (log-rank test, < 0.001; hazard ratio [HR], 5.265) and validation groups (log-rank test, < 0.001; HR, 5.223). For both groups, RS was significantly associated with overall survival after adjustments for patient age and body mass index.
CONCLUSIONS: A radiomics approach for survival prediction and risk stratification in COPD patients is feasible, and the constructed radiomics model demonstrated acceptable performance. The RS derived from chest CT data of COPD patients was able to effectively identify those at increased risk of mortality.
KEY POINTS: • A total of 525 chest CT-based radiomics features were extracted and the five radiomics features of %LAA-950, AWT_Pi10_6th, AWT_Pi10_heterogeneity, %WA_heterogeneity, and VA18mm were selected to generate a radiomics model. • A radiomics model for predicting survival of COPD patients demonstrated reliable performance with a C-index of 0.774 in the discovery group and 0.805 in the validation group. • Radiomics approach was able to effectively identify COPD patients with an increased risk of mortality, and patients assigned to the high-risk group demonstrated worse overall survival in both the discovery and validation groups.
OBJECTIVE: To identify subgroups of COPD with distinct phenotypes, evaluate the distribution of phenotypes in four related regions and calculate the 1-year change in lung function and quality of life according to subgroup.
METHODS: Using clinical characteristics, we performed factor analysis and hierarchical cluster analysis in a cohort of 1676 COPD patients from 13 Asian cities. We compared the 1-year change in forced expiratory volume in one second (FEV1), modified Medical Research Council dyspnoea scale score, St George's Respiratory Questionnaire (SGRQ) score and exacerbations according to subgroup derived from cluster analysis.
RESULTS: Factor analysis revealed that body mass index, Charlson comorbidity index, SGRQ total score and FEV1 were principal factors. Using these four factors, cluster analysis identified three distinct subgroups with differing disease severity and symptoms. Among the three subgroups, patients in subgroup 2 (severe disease and more symptoms) had the most frequent exacerbations, most rapid FEV1 decline and greatest decline in SGRQ total score.
CONCLUSION: Three subgroups with differing severities and symptoms were identified in Asian COPD subjects.