Displaying all 7 publications

Abstract:
Sort:
  1. Low VL, Wong ML, Liew JWK, Pramasivan S, Jeyaprakasam NK, Vythilingam I
    Acta Trop, 2020 Jan;201:105207.
    PMID: 31586449 DOI: 10.1016/j.actatropica.2019.105207
    A gynandromorph of Culex sitiens Wiedemann (Diptera: Culicidae) was attracted to a human during a mosquito surveillance programme conducted in Kuala Lipis, Pahang, Malaysia on July 20, 2019. Gynandromorphism was observed in antennae, maxillary palps, legs and wings of the specimen, with distinct male characters on the left and female characters on the right, though the left maxillary palp is slightly shorter than the proboscis of a typical male. The abdomen, however, displays well-developed male genitalia. This study represents the first report of oblique gynandromorphism in Cx. sitiens, one of the vectors of Japanese encephalitis in Asia.
  2. Pramasivan S, Ngui R, Jeyaprakasam NK, Low VL, Liew JWK, Vythilingam I
    Parasit Vectors, 2023 Oct 09;16(1):355.
    PMID: 37814287 DOI: 10.1186/s13071-023-05984-x
    BACKGROUND: Malaria parasites such as Plasmodium knowlesi, P. inui, and P. cynomolgi are spread from macaques to humans through the Leucosphyrus Group of Anopheles mosquitoes. It is crucial to know the distribution of these vectors to implement effective control measures for malaria elimination. Plasmodium knowlesi is the most predominant zoonotic malaria parasite infecting humans in Malaysia.

    METHODS: Vector data from various sources were used to create distribution maps from 1957 to 2021. A predictive statistical model utilizing logistic regression was developed using significant environmental factors. Interpolation maps were created using the inverse distance weighted (IDW) method and overlaid with the corresponding environmental variables.

    RESULTS: Based on the IDW analysis, high vector abundances were found in the southwestern part of Sarawak, the northern region of Pahang and the northwestern part of Sabah. However, most parts of Johor, Sabah, Perlis, Penang, Kelantan and Terengganu had low vector abundance. The accuracy test indicated that the model predicted sampling and non-sampling areas with 75.3% overall accuracy. The selected environmental variables were entered into the regression model based on their significant values. In addition to the presence of water bodies, elevation, temperature, forest loss and forest cover were included in the final model since these were significantly correlated. Anopheles mosquitoes were mainly distributed in Peninsular Malaysia (Titiwangsa range, central and northern parts), Sabah (Kudat, West Coast, Interior and Tawau division) and Sarawak (Kapit, Miri, and Limbang). The predicted Anopheles mosquito density was lower in the southern part of Peninsular Malaysia, the Sandakan Division of Sabah and the western region of Sarawak.

    CONCLUSION: The study offers insight into the distribution of the Leucosphyrus Group of Anopheles mosquitoes in Malaysia. Additionally, the accompanying predictive vector map correlates well with cases of P. knowlesi malaria. This research is crucial in informing and supporting future efforts by healthcare professionals to develop effective malaria control interventions.

  3. Jeyaprakasam NK, Low VL, Liew JWK, Pramasivan S, Wan-Sulaiman WY, Saeung A, et al.
    Sci Rep, 2022 01 10;12(1):354.
    PMID: 35013403 DOI: 10.1038/s41598-021-04106-w
    Blood feeding and host-seeking behaviors of a mosquito play an imperative role in determining its vectorial capacity in transmitting pathogens. Unfortunately, limited information is available regarding blood feeding behavior of Anopheles species in Malaysia. Collection of resting Anopheles mosquitoes for blood meal analysis poses a great challenge especially for forest dwelling mosquitoes. Therefore, a laboratory-based study was conducted to evaluate the potential use of mosquitoes caught using human landing catch (HLC) for blood meal analysis, and subsequently to document blood feeding behavior of local Anopheles mosquitoes in Peninsular Malaysia. The laboratory-based experiment from this study revealed that mosquitoes caught using HLC had the potential to be used for blood meal analysis. Besides HLC, mosquitoes were also collected using manual aspirator and Mosquito Magnet. Overall, 47.4% of 321 field-caught Anopheles mosquitoes belonging to six species were positive for vertebrate host DNA in their blood meal. The most frequent blood meal source was human (45.9%) followed by wild boar (27.4%), dog (15.3%) and monkey (7.5%). Interestingly, only Anopheles cracens and Anopheles introlatus (Leucosphyrus Group) fed on monkey. This study further confirmed that members of the Leucosphyrus Group are the predominant vectors for knowlesi malaria transmission in Peninsular Malaysia mainly due to their simio-anthropophagic feeding behavior.
  4. Jeyaprakasam NK, Low VL, Pramasivan S, Liew JWK, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2023 Jun;17(6):e0011438.
    PMID: 37384790 DOI: 10.1371/journal.pntd.0011438
    BACKGROUND: The elimination of malaria in Southeast Asia has become more challenging as a result of rising knowlesi malaria cases. In addition, naturally occurring human infections with other zoonotic simian malaria caused by Plasmodium cynomolgi and Plasmodium inui adds another level of complexity in malaria elimination in this region. Unfortunately, data on vectors which are responsible for transmitting this zoonotic disease is very limited.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted longitudinal studies to investigate the entomological parameters of the simian malaria vectors and to examine the genetic diversity and evolutionary pattern of their simian Plasmodium. All the captured Anopheles mosquitoes were dissected to examine for the presence of oocysts, sporozoites and to determine the parous rate. Our study revealed that the Anopheles Leucosphyrus Group mosquitoes are highly potential competent vectors, as evidenced by their high rate of parity, survival and sporozoite infections in these mosquitoes. Thus, these mosquitoes represent a risk of human infection with zoonotic simian malaria in this region. Haplotype analysis on P. cynomolgi and P. inui, found in high prevalence in the Anopheles mosquitoes from this study, had shown close relationship between simian Plasmodium from the Anopheles mosquitoes with its vertebrate hosts. This directly signifies the ongoing transmission between the vector, macaques, and humans. Furthermore, population genetic analysis showed significant negative values which suggest that both Plasmodium species are undergoing population expansion.

    CONCLUSIONS/SIGNIFICANCE: With constant microevolutionary processes, there are potential for both P. inui and P. cynomolgi to emerge and spread as a major public health problem, following the similar trend of P. knowlesi. Therefore, concerted vector studies in other parts of Southeast Asia are warranted to better comprehend the transmission dynamics of this zoonotic simian malaria which eventually would aid in the implementation of effective control measures in a rapidly changing environment.

  5. Jeyaprakasam NK, Pramasivan S, Liew JWK, Van Low L, Wan-Sulaiman WY, Ngui R, et al.
    Parasit Vectors, 2021 Apr 01;14(1):184.
    PMID: 33794965 DOI: 10.1186/s13071-021-04689-3
    BACKGROUND: Vector surveillance is essential in determining the geographical distribution of mosquito vectors and understanding the dynamics of malaria transmission. With the elimination of human malaria cases, knowlesi malaria cases in humans are increasing in Malaysia. This necessitates intensive vector studies using safer trapping methods which are both field efficient and able to attract the local vector populations. Thus, this study evaluated the potential of Mosquito Magnet as a collection tool for Anopheles mosquito vectors of simian malaria along with other known collection methods.

    METHODS: A randomized 4 × 4 Latin square designed experiment was conducted to compare the efficiency of the Mosquito Magnet against three other common trapping methods: human landing catch (HLC), CDC light trap and human baited trap (HBT). The experiment was conducted over six replicates where sampling within each replicate was carried out for 4 consecutive nights. An additional 4 nights of sampling was used to further evaluate the Mosquito Magnet against the "gold standard" HLC. The abundance of Anopheles sampled by different methods was compared and evaluated with focus on the Anopheles from the Leucosphyrus group, the vectors of knowlesi malaria.

    RESULTS: The Latin square designed experiment showed HLC caught the greatest number of Anopheles mosquitoes (n = 321) compared to the HBT (n = 87), Mosquito Magnet (n = 58) and CDC light trap (n = 13). The GLMM analysis showed that the HLC method caught significantly more Anopheles mosquitoes compared to Mosquito Magnet (P = 0.049). However, there was no significant difference in mean nightly catch of Anopheles mosquitoes between Mosquito Magnet and the other two trapping methods, HBT (P = 0.646) and CDC light traps (P = 0.197). The mean nightly catch for both An. introlatus (9.33 ± 4.341) and An. cracens (4.00 ± 2.273) caught using HLC was higher than that of Mosquito Magnet, though the differences were not statistically significant (P > 0.05). This is in contrast to the mean nightly catch of An. sinensis (15.75 ± 5.640) and An. maculatus (15.78 ± 3.479) where HLC showed significantly more mosquito catches compared to Mosquito Magnet (P 

  6. Pramasivan S, Ngui R, Jeyaprakasam NK, Liew JWK, Low VL, Mohamed Hassan N, et al.
    Malar J, 2021 Oct 29;20(1):426.
    PMID: 34715864 DOI: 10.1186/s12936-021-03963-0
    BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies.

    METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor.

    RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km.

    CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.

  7. Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, et al.
    Parasit Vectors, 2020 Aug 12;13(1):414.
    PMID: 32787974 DOI: 10.1186/s13071-020-04277-x
    BACKGROUND: The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes.

    METHODS: The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software.

    RESULTS: A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar.

    CONCLUSIONS: Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links