Displaying all 4 publications

Abstract:
Sort:
  1. Kumar G, Saratale RG, Kadier A, Sivagurunathan P, Zhen G, Kim SH, et al.
    Chemosphere, 2017 Jun;177:84-92.
    PMID: 28284119 DOI: 10.1016/j.chemosphere.2017.02.135
    Bio-electrochemical systems (BESs) are the microbial systems which are employed to produce electricity directly from organic wastes along with some valuable chemicals production such as medium chain fatty acids; acetate, butyrate and alcohols. In this review, recent updates about value-added chemicals production concomitantly with the production of gaseous fuels like hydrogen and methane which are considered as cleaner for the environment have been addressed. Additionally, the bottlenecks associated with the conversion rates, lower yields and other aspects have been mentioned. In spite of its infant stage development, this would be the future trend of energy, biochemicals and electricity production in greener and cleaner pathway with the win-win situation of organic waste remediation. Henceforth, this review intends to summarise and foster the progress made in the BESs and discusses its challenges and outlook on future research advances.
  2. Saratale RG, Saratale GD, Pugazhendhi A, Zhen G, Kumar G, Kadier A, et al.
    Chemosphere, 2017 Mar 09;177:176-188.
    PMID: 28288426 DOI: 10.1016/j.chemosphere.2017.02.143
    Microbial electrochemical systems (MESs) are an attracting technology for the disposal of wastewater treatment and simultaneous energy production. In MESs, at the anode microorganisms through the catalytic activity generates electrons that can be converted into electricity or other valuable chemical compounds. Microorganisms those having ability to donate and accept electrons to and from anode and cathode electrodes, respectively are recognized as 'exoelectrogens'. In the MESs, it renders an important function for its performance. In the present mini-review, we have discussed the role of microbiome including pure culture, enriched culture and mixed culture in different BESs application. The effects of operational and biological factors on microbiome development have been discussed. Further discussion about the molecular techniques for the evaluation of microbial community analysis is addressed. In addition different electrochemical techniques for extracellular electron transfer (EET) mechanism of electroactive biofilms have been discussed. This review highlights the importance of microbiome in the development of MESs, effective operational factors for exo-electrogens activities as well their key challenges and future technological aspects are also briefly discussed.
  3. Sivagurunathan P, Kuppam C, Mudhoo A, Saratale GD, Kadier A, Zhen G, et al.
    Crit Rev Biotechnol, 2018 Sep;38(6):868-882.
    PMID: 29264932 DOI: 10.1080/07388551.2017.1416578
    This review provides the alternative routes towards the valorization of dark H2 fermentation effluents that are mainly rich in volatile fatty acids such as acetate and butyrate. Various enhancement and alternative routes such as photo fermentation, anaerobic digestion, utilization of microbial electrochemical systems, and algal system towards the generation of bioenergy and electricity and also for efficient organic matter utilization are highlighted. What is more, various integration schemes and two-stage fermentation for the possible scale up are reviewed. Moreover, recent progress for enhanced performance towards waste stabilization and overall utilization of useful and higher COD present in the organic source into value-added products are extensively discussed.
  4. Kadier A, Kalil MS, Chandrasekhar K, Mohanakrishna G, Saratale GD, Saratale RG, et al.
    Bioelectrochemistry, 2018 Feb;119:211-219.
    PMID: 29073521 DOI: 10.1016/j.bioelechem.2017.09.014
    Microbial electrolysis cells (MECs) are perceived as a potential and promising innovative biotechnological tool that can convert carbon-rich waste biomass or wastewater into hydrogen (H2) or other value-added chemicals. Undesired methane (CH4) producing H2 sinks, including methanogens, is a serious challenge faced by MECs to achieve high-rate H2 production. Methanogens can consume H2 to produce CH4 in MECs, which has led to a drop of H2 production efficiency, H2 production rate (HPR) and also a low percentage of H2 in the produced biogas. Organized inference related to the interactions of microbes and potential processes has assisted in understanding approaches and concepts for inhibiting the growth of methanogens and profitable scale up design. Thus, here in we review the current developments and also the improvements constituted for the reduction of microbial H2 losses to methanogens. Firstly, the greatest challenge in achieving practical applications of MECs; undesirable microorganisms (methanogens) growth and various studied techniques for eliminating and reducing methanogens activities in MECs were discussed. Additionally, this extensive review also considers prospects for stimulating future research that could help to achieve more information and would provide the focus and path towards MECs as well as their possibilities for simultaneously generating H2 and waste remediation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links