Displaying all 12 publications

Abstract:
Sort:
  1. Wang X, Sun B, Liu B, Fu Y, Zheng P
    PLoS One, 2017;12(11):e0186853.
    PMID: 29095845 DOI: 10.1371/journal.pone.0186853
    Experimental design focuses on describing or explaining the multifactorial interactions that are hypothesized to reflect the variation. The design introduces conditions that may directly affect the variation, where particular conditions are purposely selected for observation. Combinatorial design theory deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of balance and/or symmetry. In this work, borrowing the concept of "balance" in combinatorial design theory, a novel method for multifactorial bio-chemical experiments design is proposed, where balanced templates in combinational design are used to select the conditions for observation. Balanced experimental data that covers all the influencing factors of experiments can be obtianed for further processing, such as training set for machine learning models. Finally, a software based on the proposed method is developed for designing experiments with covering influencing factors a certain number of times.
  2. Sun B, Jia L, Liang B, Chen Q, Liu D
    Virol Sin, 2018 Oct;33(5):385-393.
    PMID: 30311101 DOI: 10.1007/s12250-018-0050-1
    Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemiological surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious disease are urgently needed.
  3. Liu M, Gan H, Lin Y, Lin R, Xue M, Zhang T, et al.
    Int J Environ Res Public Health, 2022 Nov 08;19(22).
    PMID: 36429381 DOI: 10.3390/ijerph192214663
    BACKGROUND: The credible materials about the burden of asthma in China when compared to other countries in the group of twenty (G20) remain unavailable.

    OBJECTIVES AND DESIGN: Following the popular analysis strategy used in the Global Burden of Disease Study, the age-, sex-, country-specific prevalence, and disability-adjusted life years (DALYs) of asthma in China were analyzed. Meanwhile, the comparison in trends between China and other countries in the G20 was also evaluated.

    RESULTS: In 2019, asthma was the 8th leading cause of the DALYs' burden of 369 diseases in China. From 1990 to 2019, the age-standardized prevalence and DALY rates of asthma in China decreased by 14% and 51%, respectively; further, the decline rate of DALYs was much higher than the global average (-51%: -43%). It is worth noting that the overall population age-standardized DALYs rate of asthma in China was the lowest in the G20 during 2019 (102.81, 95% UI: (72.30,147.42)/100,000). Moreover, the age-standardized asthma prevalence rate peaks in both childhood (178.14, 95% UI: (90.50, 329.01)/100,000) and the elderly (541.80, 95% UI: (397.79, 679.92)/100,000). Moreover, throughout the study, subjects in the 5 to 9 years old interval were a constant focus of our attention.

    CONCLUSIONS: The disease burden of asthma has varied greatly by gender and age over the past 30 years. In contrast to the increasing burden in most other G20 countries, the age-standardized prevalence rate of asthma shows a significant decreasing trend in China, however, the age-standardized DALYs rate shows a fluctuating change, and has even shown a rebound trend in recent years.

  4. Wang Y, Shi H, Zhang Y, Li X, Zhao M, Sun B
    Foods, 2023 Nov 22;12(23).
    PMID: 38231600 DOI: 10.3390/foods12234210
    Food self-sufficiency has long been regarded as essential for understanding and managing urban and regional food systems; however, few studies have examined the food self-sufficiency of megacity regions within a comprehensive framework that distinguishes different types of agricultural land (i.e., arable land, horticultural landscapes, and waters). To fill these gaps, we took the Pearl River Delta as a case study and quantified the foodsheds of different types of agricultural land by calculating the land footprint of food consumption. On this basis, food self-sufficiency is defined as the ratio of available and required agricultural area for regional food demand. The results indicated that the self-sufficiency level provided by the arable land in the Pearl River Delta is low and cannot realize self-sufficiency at the regional and urban levels. The horticultural landscapes can provide self-sufficiency at the regional level, whereas the regions with water cannot, as their foodsheds extend over the boundary of the Pearl River Delta. For arable land, establishing a localized regional food system requires expanding the foodshed size. These findings provide evidence that megacity regions may face increasing difficulties in achieving self-sufficiency in the near future. This research can improve policymakers' understanding of the sustainability and resilience of regional food systems in megacity regions.
  5. Lan X, Huang W, Sun B, Waiho K, Song H, Hu M, et al.
    Aquat Toxicol, 2024 May;270:106900.
    PMID: 38537436 DOI: 10.1016/j.aquatox.2024.106900
    Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 μg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.
  6. Sun B, Hu M, Lan X, Waiho K, Lv X, Xu C, et al.
    Environ Int, 2024 Apr 20;187:108681.
    PMID: 38663234 DOI: 10.1016/j.envint.2024.108681
    Exposing marine organisms to contemporary contaminants, such as perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO2), can induce multifaceted physiological consequences. Our investigation centered on the responses of the mussel, Mytilus coruscus, to these agents. We discerned pronounced disruptions in gill filament connections, pivotal structures for aquatic respiration, suggesting compromised oxygen uptake capabilities. Concurrently, the respiratory rate exhibited a marked decline, indicating a respiratory distress. Furthermore, the mussels' clearance rate, a metric of their filtration efficacy, diminished, suggesting the potential for bioaccumulation of deleterious substances. Notably, the co-exposure of PFOA and nano-TiO2 exhibits interactive effects on the physiological performance of the mussels. The mussels' digestive performance waned in the face of heightened PFOA and nano-TiO2 concentrations, possibly hampering nutrient assimilation and energy accrual. This was mirrored in the noticeable contraction of their energy budget, suggesting long-term growth repercussions. Additionally, the dysregulation of the gut microbiota and the reduction in its diversity further confirm alterations in intestinal homeostasis, subsequently impacting its physiological functions and health. Collectively, these findings underscore the perils posed by escalated PFOA and nano-TiO2 levels to marine mussels, accentuating the need for a deeper understanding of nanoparticle-pollutant synergies in marine ecosystems.
  7. Chang YM, Zhao XF, Liew HJ, Sun B, Wang SY, Luo L, et al.
    Front Physiol, 2021;12:676096.
    PMID: 34594232 DOI: 10.3389/fphys.2021.676096
    The Amur ide (Leuciscus waleckii) is a fish in the Cyprinidae family. Compared with other Amur ide living in freshwater ecosystems, the Amur ide population in Lake Dali Nor of China is famous for its high tolerance to the alkaline conditions of 54 mM (pH 9.6). Yet, surprisingly, the ionoregulatory mechanism responsible for this remarkable alkaline adaptation remains unclear. Therefore, this study sought to investigate how bicarbonate affects the acid-base balancing and ionoregulatory responses of this animal. Here, using a comparative approach, the alkali form of Amur ide and its ancestral freshwater form living in other freshwater basins were each exposed to 50 mM (pH 9.59 ± 0.09), a level close to the alkalinity of Lake Dali Nor, and their physiological (AE1) adjustment of ions and acid-base regulation were investigated. This study highlighted differences in blood pH and serum ions (e.g., Na+, K+, Cl-, and Ca2+), Na+/K+ ATPase (NKA) activity and its mRNA level, and mRNA expression of gill transporters (Na+/H+ exchanger member 2 and/or 3, Na+/ HCO 3 - cotransporter (NBC1), Cl-/ HCO 3 - exchanger, Na+/Cl- cotransporter (NCC), Na+/K+/2Cl- (NKCC1), SLC26A5, and SLC26A6) for alkalinity adaptation between the two forms of Amur ide differing in alkalinity tolerance. Specifically, close relationships among the serum Na+ and mRNA levels of NCC, NKCC1, and NHE, and also NKA and NBC1, in addition to serum Cl- and bicarbonate transporters (e.g., SLC26A5 and SLC26A6), characterized the alkali form of Amur ide. We propose that this ecotype can ensure its transepithelial Cl- and Na+ uptake/base secretions are highly functional, by its basolateral NKA with NBC1 and apical ionic transporters, and especially NCC incorporated with other transporters (e.g., SLC26). This suggests an evolved strong ability to maintain an ion osmotic and acid-base balance for more effectively facilitating its adaptability to the high alkaline environment. This study provides new insights into the physiological responses of the alkaline form of the Amur ide fish for adapting to extreme alkaline conditions. This information could be used as a reference to cultivating alkaline-tolerant fish species in abandoned alkaline waters.
  8. Zhao XF, Liang LQ, Liew HJ, Chang YM, Sun B, Wang SY, et al.
    Front Physiol, 2021;12:665268.
    PMID: 34177616 DOI: 10.3389/fphys.2021.665268
    Leuciscus waleckii is a freshwater fish that is known to inhabit the Dali Nor Lake, Inner Mongolia, China. The water in this lake has an HCO3 -/CO3 2- concentration of 54 mM (pH 9.6) and a salinity of 0.6‰. The physiological mechanisms that allow this fish to tolerate these saline/alkaline conditions have yet to be elucidated. Transcriptional component analysis has shown that the expression levels of a large number of genes involved in the pathways responsible for osmo-ionoregulation and arachidonic acid metabolism pathway expression change significantly (p < 0.05) during the regulation of acid-base balance under high alkaline stress. In this study, we investigated the role of long non-coding RNAs (lncRNAs) during adaptation to high alkaline conditions. Fish were challenged to an NaHCO3-adjusted alkalinity of 0 mM, 30 mM (pH 9.44 ± 0.08), and 50 mM (pH 9.55 ± 0.06) for 20 days in the laboratory. Gill and kidney tissues were then collected for high-throughput sequencing assays. A total of 159 million clean reads were obtained by high-throughput sequencing, and 41,248 lncRNA transcripts were identified. Of these, the mean number of exons and the mean length of the lncRNA transcripts were 4.8 and 2,079 bp, respectively. Based on the analysis of differential lncRNA transcript expression, a total of 5,244 and 6,571 lncRNA transcripts were found to be differentially expressed in the gills and kidneys, respectively. Results derived from Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the coding genes were correlated with the lncRNA expression profiles. GO analysis showed that many lncRNAs were enriched in the following processes: "transporter activity," "response to stimulus," and "binding." KEGG analysis further revealed that metabolic pathways were significantly enriched. A random selection of 16 lncRNA transcripts was tested by RT-qPCR; these results were consistent with our sequencing results. We found that a large number of genes, with the same expression profiles as those with differentially expressed lncRNAs, were associated with the regulation of acid-base balance, ion transport, and the excretion of ammonia and nitrogen. Collectively, our data indicate that lncRNA-regulated gene expression plays an important role in the process of adaptation to high alkaline conditions in L. waleckii.
  9. Li M, Zhang H, Zhang W, Cao Y, Sun B, Jiang Q, et al.
    Sci Total Environ, 2023 Mar 14;876:162807.
    PMID: 36921865 DOI: 10.1016/j.scitotenv.2023.162807
    In Shanghai, the prevalence of tet(X4) and tet(X4)-carrying plasmid from food-producing -animal Enterobacteriales has not been intensively investigated. Here, five tet(X4)-positive swine-origin E. coli strains were characterized among 652 food-producing-animal E. coli isolates in Shanghai during 2018-2021 using long-term surveillance among poultry, swine and cattle, antimicrobial susceptibility testing, and tet(X4)-specific PCR. A combination of short- and long-read sequencing technologies demonstrated that the five strains with 4 STs carried a nearly identical 193 kb tet(X4)-bearing plasmid (p193k-tetX4) belonging to the same IncFIA(HI1)/IncHI1A/IncHIB plasmid family (p193k). Surprisingly, 34 of the 151 global tet(X4)-positive plasmids was the p193k members and exclusively pandemic in China. Other p193k members harboring many critically important ARGs (mcr or blaNDM) with particular genetic environment are widespread throughout human-animal-environmental sources, with 33.77 % human origin. Significantly, phylogenetic analysis of 203 p193k-tetX4 sequences revealed that human- and animal-origin plasmids clustered within the same phylogenetic subgroups. The largest lineage (173/203) comprised 161 E. coli, 6 Klebsiella, 3 Enterobacter, 2 Citrobacter, and 1 Leclercia spp. from animals (n = 143), humans (n = 18), and the environment (n = 9). Intriguingly, the earliest 2015 E. coli strain YA_GR3 from Malaysian river water and 2016 S. enterica Chinese clinical strain GX1006 in another lineage demonstrated that p193k-tetX4 have been widely spread from S. enterica or E. coli to other Enterobacterales. Furthermore, 180 E. coli p193k-tetX4 strains were widespread cross-sectorial transmission among food animals, pets, migratory birds, human and ecosystems. Our findings proved the extensive transmission of the high-risk p193k harboring crucial ARGs across multiple interfaces and species. Therefore, one-health-based systemic surveillance of these similar high-risk plasmids across numerous sources and bacterial species is extremely essential.
  10. Wei S, Sun B, Liu C, Sokolova I, Waiho K, Fang JKH, et al.
    Sci Total Environ, 2023 Oct 01;893:164836.
    PMID: 37321498 DOI: 10.1016/j.scitotenv.2023.164836
    Nano-TiO2 can act as a vector to organic compounds, such as pentachlorophenol (PCP) posing a potential threat to the marine ecosystems. Studies showed that nano pollutant toxicity can be modulated by abiotic factors, but little is known about the potential influence of biotic stressors (such as predators) on the physiological responses to pollutants in marine organisms. We explored the effects of n-TiO2 and PCP on the mussel Mytilus coruscus in the presence of its natural predator, the swimming crab Portunus trituberculatus. Exposure to n-TiO2, PCP, and predation risk showed interactive effects on antioxidant and immune parameters of the mussels. Elevated activities of catalase (CAT), glutathione peroxidase (GPX), acid phosphatase (ACP) and alkaline phosphatase (AKP), suppressed activity of superoxide dismutase (SOD), lower levels of glutathione (GSH) and increased malondialdehyde (MDA) levels indicated dysregulation of the antioxidant system and immune stress induced by single PCP or n-TiO2 exposure. Integrated biomarker (IBR) response values showed the effect of PCP was concentration dependent. Of the two used n-TiO2 sizes (25 and 100 nm), larger particles induced higher antioxidant and immune disturbances indicating higher toxicity possibly due to higher bioavailability. Compared to single PCP exposure, the combination of n-TiO2 and PCP enhanced the imbalance of SOD/CAT and GSH/GPX and led to elevated oxidative lesions and activation of immune-related enzymes. Overall, the combined impacts of pollutants and biotic stress exhibited a greater magnitude of adverse effects on antioxidant defense and immune parameters in mussels. The toxicological effects of PCP were exacerbated in the presence of n-TiO2, and the deleterious impact of these stressors was further amplified under predator-induced risk after prolonged (28 days) exposure. However, the underlying physiological regulatory mechanisms governing the interplay of these stressors and predatory cues on mussels remain elusive, warranting further investigation.
  11. Manosroi W, Tan JW, Rariy CM, Sun B, Goodarzi MO, Saxena AR, et al.
    J Clin Endocrinol Metab, 2017 11 01;102(11):4124-4135.
    PMID: 28938457 DOI: 10.1210/jc.2017-00957
    Context: Hypertension in young women is uncommon compared with young men and older women. Estrogen appears to protect most women against hypertension, with incidence increasing after menopause. Because some premenopausal women develop hypertension, estrogen may play a different role in these women. Genetic variations in the estrogen receptor (ER) are associated with cardiovascular disease. ER-β, encoded by ESR2, is the ER predominantly expressed in vascular smooth muscle.

    Objective: To determine an association of single nucleotide polymorphisms in ESR2 with salt sensitivity of blood pressure (SSBP) and estrogen status in women.

    Methods: Candidate gene association study with ESR2 and SSBP conducted in normotensive and hypertensive women and men in two cohorts: International Hypertensive Pathotype (HyperPATH) (n = 584) (discovery) and Mexican American Hypertension-Insulin Resistance Study (n = 662) (validation). Single nucleotide polymorphisms in ESR1 (ER-α) were also analyzed. Analysis conducted in younger (<51 years, premenopausal, "estrogen-replete") and older women (≥51 years, postmenopausal, "estrogen-deplete"). Men were analyzed to control for aging.

    Results: Multivariate analyses of HyperPATH data between variants of ESR2 and SSBP documented that ESR2 rs10144225 minor (risk) allele carriers had a significantly positive association with SSBP driven by estrogen-replete women (β = +4.4 mm Hg per risk allele, P = 0.004). Findings were confirmed in Hypertension Insulin-Resistance Study premenopausal women. HyperPATH cohort analyses revealed risk allele carriers vs noncarriers had increased aldosterone/renin ratios. No associations were detected with ESR1.

    Conclusions: The variation at rs10144225 in ESR2 was associated with SSBP in premenopausal women (estrogen-replete) and not in men or postmenopausal women (estrogen-deplete). Inappropriate aldosterone levels on a liberal salt diet may mediate the SSBP.

  12. Pereda J, Niimi G, Kaul JM, Mishra S, Pangtey B, Peri D, et al.
    Surg Radiol Anat, 2009 Sep;31 Suppl 1:49-93.
    PMID: 27392491 DOI: 10.1007/BF03371485
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links