Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Islam MA, Sundaraj K, Ahmad RB, Ahamed NU
    PLoS One, 2013;8(3):e58902.
    PMID: 23536834 DOI: 10.1371/journal.pone.0058902
    BACKGROUND: Mechanomyography (MMG) has been extensively applied in clinical and experimental practice to examine muscle characteristics including muscle function (MF), prosthesis and/or switch control, signal processing, physiological exercise, and medical rehabilitation. Despite several existing MMG studies of MF, there has not yet been a review of these. This study aimed to determine the current status on the use of MMG in measuring the conditions of MFs.

    METHODOLOGY/PRINCIPAL FINDINGS: Five electronic databases were extensively searched for potentially eligible studies published between 2003 and 2012. Two authors independently assessed selected articles using an MS-Word based form created for this review. Several domains (name of muscle, study type, sensor type, subject's types, muscle contraction, measured parameters, frequency range, hardware and software, signal processing and statistical analysis, results, applications, authors' conclusions and recommendations for future work) were extracted for further analysis. From a total of 2184 citations 119 were selected for full-text evaluation and 36 studies of MFs were identified. The systematic results find sufficient evidence that MMG may be used for assessing muscle fatigue, strength, and balance. This review also provides reason to believe that MMG may be used to examine muscle actions during movements and for monitoring muscle activities under various types of exercise paradigms.

    CONCLUSIONS/SIGNIFICANCE: Overall judging from the increasing number of articles in recent years, this review reports sufficient evidence that MMG is increasingly being used in different aspects of MF. Thus, MMG may be applied as a useful tool to examine diverse conditions of muscle activity. However, the existing studies which examined MMG for MFs were confined to a small sample size of healthy population. Therefore, future work is needed to investigate MMG, in examining MFs between a sufficient number of healthy subjects and neuromuscular patients.

  2. Talib I, Sundaraj K, Hussain J, Lam CK, Ahmad Z
    Sci Rep, 2022 Sep 27;12(1):16086.
    PMID: 36168025 DOI: 10.1038/s41598-022-20223-6
    This study aimed to analyze anthropometrics and mechanomyography (MMG) signals as forearm flexion, pronation, and supination torque predictors. 25 young, healthy, male participants performed isometric forearm flexion, pronation, and supination tasks from 20 to 100% maximal voluntary isometric contraction (MVIC) while maintaining 90° at the elbow joint. Nine anthropometric measures were recorded, and MMG signals from the biceps brachii (BB), brachialis (BRA), and brachioradialis (BRD) muscles were digitally acquired using triaxial accelerometers. These were then correlated with torque values. Significant positive correlations were found for arm circumference (CA) and MMG root mean square (RMS) values with flexion torque. Flexion torque might be predicted using CA (r = 0.426-0.575), a pseudo for muscle size while MMGRMS (r = 0.441), an indication of muscle activation.
  3. Islam A, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    Muscle Nerve, 2015 Jun;51(6):899-906.
    PMID: 25204740 DOI: 10.1002/mus.24454
    In this study, we analyzed the crosstalk in mechanomyographic (MMG) signals generated by the extensor digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles of the forearm during wrist flexion (WF) and extension (WE) and radial (RD) and ulnar (UD) deviations.
  4. Islam MA, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    PLoS One, 2014;9(8):e104280.
    PMID: 25090008 DOI: 10.1371/journal.pone.0104280
    In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity.
  5. Islam MA, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    PLoS One, 2014;9(5):e96628.
    PMID: 24802858 DOI: 10.1371/journal.pone.0096628
    This study aimed: i) to examine the relationship between the magnitude of cross-talk in mechanomyographic (MMG) signals generated by the extensor digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles with the sub-maximal to maximal isometric grip force, and with the anthropometric parameters of the forearm, and ii) to quantify the distribution of the cross-talk in the MMG signal to determine if it appears due to the signal component of intramuscular pressure waves produced by the muscle fibers geometrical changes or due to the limb tremor.
  6. Talib I, Sundaraj K, Lam CK, Hussain J, Ali MA
    Eur J Appl Physiol, 2019 Jan;119(1):9-28.
    PMID: 30242464 DOI: 10.1007/s00421-018-3994-9
    PURPOSE: Crosstalk in myographic signals is a major hindrance to the understanding of local information related to individual muscle function. This review aims to analyse the problem of crosstalk in electromyography and mechanomyography.

    METHODS: An initial search of the SCOPUS database using an appropriate set of keywords yielded 290 studies, and 59 potential studies were selected after all the records were screened using the eligibility criteria. This review on crosstalk revealed that signal contamination due to crosstalk remains a major challenge in the application of surface myography techniques. Various methods have been employed in previous studies to identify, quantify and reduce crosstalk in surface myographic signals.

    RESULTS: Although correlation-based methods for crosstalk quantification are easy to use, there is a possibility that co-contraction could be interpreted as crosstalk. High-definition EMG has emerged as a new technique that has been successfully applied to reduce crosstalk.

    CONCLUSIONS: The phenomenon of crosstalk needs to be investigated carefully because it depends on many factors related to muscle task and physiology. This review article not only provides a good summary of the literature on crosstalk in myographic signals but also discusses new directions related to techniques for crosstalk identification, quantification and reduction. The review also provides insights into muscle-related issues that impact crosstalk in myographic signals.

  7. Uwamahoro R, Sundaraj K, Feroz FS
    Sensors (Basel), 2023 Sep 29;23(19).
    PMID: 37836995 DOI: 10.3390/s23198165
    Neuromuscular electrical stimulation plays a pivotal role in rehabilitating muscle function among individuals with neurological impairment. However, there remains uncertainty regarding whether the muscle's response to electrical excitation is affected by forearm posture, joint angle, or a combination of both factors. This study aimed to investigate the effects of forearm postures and elbow joint angles on the muscle torque and MMG signals. Measurements of the torque around the elbow and MMG of the biceps brachii (BB) muscle were conducted in 36 healthy subjects (age, 22.24 ± 2.94 years; height, 172 ± 0.5 cm; and weight, 67.01 ± 7.22 kg) using an in-house elbow flexion testbed and neuromuscular electrical stimulation (NMES) of the BB muscle. The BB muscle was stimulated while the forearm was positioned in the neutral, pronation, or supination positions. The elbow was flexed at angles of 10°, 30°, 60°, and 90°. The study analyzed the impact of the forearm posture(s) and elbow joint angle(s) on the root-mean-square value of the torque (TQRMS). Subsequently, various MMG parameters, such as the root-mean-square value (MMGRMS), the mean power frequency (MMGMPF), and the median frequency (MMGMDF), were analyzed along the longitudinal, lateral, and transverse axes of the BB muscle fibers. The test-retest interclass correlation coefficient (ICC21) for the torque and MMG ranged from 0.522 to 0.828. Repeated-measure ANOVAs showed that the forearm posture and elbow flexion angle significantly influenced the TQRMS (p < 0.05). Similarly, the MMGRMS, MMGMPF, and MMGMDF showed significant differences among all the postures and angles (p < 0.05). However, the combined main effect of the forearm posture and elbow joint angle was insignificant along the longitudinal axis (p > 0.05). The study also found that the MMGRMS and TQRMS increased with increases in the joint angle from 10° to 60° and decreased at greater angles. However, during this investigation, the MMGMPF and MMGMDF exhibited a consistent decrease in response to increases in the joint angle for the lateral and transverse axes of the BB muscle. These findings suggest that the muscle contraction evoked by NMES may be influenced by the interplay between actin and myosin filaments, which are responsible for muscle contraction and are, in turn, influenced by the muscle length. Because restoring the function of limbs is a common goal in rehabilitation services, the use of MMG in the development of methods that may enable the real-time tracking of exact muscle dimensional changes and activation levels is imperative.
  8. Ali A, Sundaraj K, Ahmad B, Ahamed N, Islam A
    Bosn J Basic Med Sci, 2012 Aug;12(3):193-202.
    PMID: 22938548
    Even though the amount of rehabilitation guidelines has never been greater, uncertainty continues to arise regarding the efficiency and effectiveness of the rehabilitation of gait disorders. This question has been hindered by the lack of information on accurate measurements of gait disorders. Thus, this article reviews the rehabilitation systems for gait disorder using vision and non-vision sensor technologies, as well as the combination of these. All papers published in the English language between 1990 and June, 2012 that had the phrases "gait disorder", "rehabilitation", "vision sensor", or "non vision sensor" in the title, abstract, or keywords were identified from the SpringerLink, ELSEVIER, PubMed, and IEEE databases. Some synonyms of these phrases and the logical words "and", "or", and "not" were also used in the article searching procedure. Out of the 91 published articles found, this review identified 84 articles that described the rehabilitation of gait disorders using different types of sensor technologies. This literature set presented strong evidence for the development of rehabilitation systems using a markerless vision-based sensor technology. We therefore believe that the information contained in this review paper will assist the progress of the development of rehabilitation systems for human gait disorders.
  9. Ahamed NU, Sundaraj K, Ahmad B, Rahman M, Ali MA, Islam MA
    Australas Phys Eng Sci Med, 2014 Mar;37(1):83-95.
    PMID: 24477560 DOI: 10.1007/s13246-014-0245-1
    Cricket bowling generates forces with torques on the upper limb muscles and makes the biceps brachii (BB) muscle vulnerable to overuse injury. The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal of the BB muscle during fast and spin delivery, during the seven phases of both types of bowling and the kinesiological interpretation of the bowling arm for muscle contraction mechanisms during bowling. A group of 16 male amateur bowlers participated in this study, among them 8 fast bowlers (FB) and 8 spin bowlers (SB). The root mean square (EMGRMS), the average sEMG (EMGAVG), the maximum peak amplitude (EMGpeak), and the variability of the signal were calculated using the coefficient of variance (EMGCV) from the BB muscle of each bowler (FB and SB) during each bowling phase. The results demonstrate that, (i) the BB muscle is more active during FB than during SB, (ii) the point of ball release and follow-through generated higher signals than the other five movements during both bowling categories, (iii) the BB muscle variability is higher during SB compared with FB, (iv) four statistically significant differences (p<0.05) found between the bowling phases in fast bowling and three in spin bowling, and (v) several arm mechanics occurred for muscle contraction. There are possible clinical significances from the outcomes; like, recurring dynamic contractions on BB muscle can facilitate to clarify the maximum occurrence of shoulder pain as well as biceps tendonitis those are medically observed in professional cricket bowlers, and treatment methods with specific injury prevention programmes should focus on the different bowling phases with the maximum muscle effect. Finally, these considerations will be of particular importance in assessing different physical therapy on bowler's muscle which can improve the ball delivery performance and stability of cricket bowlers.
  10. Ahamed NU, Sundaraj K, Alqahtani M, Altwijri O, Ali MA, Islam MA
    Technol Health Care, 2014 Oct 15.
    PMID: 25318958
    BACKGROUND: The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex.

    OBJECTIVE: The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations.

    METHODS: Twenty-one right hand dominant male subjects (age 25.3 ± 1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation.

    RESULTS: The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r^{2} = 0.61, P > 0.05) than when placed on the lower part (r^{2}=0.31, P< 0.05) and upper part of the muscle belly (r^{2}=0.29, P > 0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively).

    CONCLUSION: These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  11. Yuvaraj R, Murugappan M, Norlinah MI, Sundaraj K, Khairiyah M
    Dement Geriatr Cogn Disord, 2013;36(3-4):179-96.
    PMID: 23899462 DOI: 10.1159/000353440
    OBJECTIVE: Patients suffering from stroke have a diminished ability to recognize emotions. This paper presents a review of neuropsychological studies that investigated the basic emotion processing deficits involved in individuals with interhemispheric brain (right, left) damage and normal controls, including processing mode (perception) and communication channels (facial, prosodic-intonational, lexical-verbal).
    METHODS: An electronic search was conducted using specific keywords for studies investigating emotion recognition in brain damage patients. The PubMed database was searched until March 2012 as well as citations and reference lists. 92 potential articles were identified.
    RESULTS: The findings showed that deficits in emotion perception were more frequently observed in individuals with right brain damage than those with left brain damage when processing facial, prosodic and lexical emotional stimuli.
    CONCLUSION: These findings suggest that the right hemisphere has a unique contribution in emotional processing and provide support for the right hemisphere emotion hypothesis.
    SIGNIFICANCE:
    This robust deficit in emotion recognition has clinical significance. The extent of emotion recognition deficit in brain damage patients appears to be correlated with a variety of interpersonal difficulties such as complaints of frustration in social relations, feelings of social discomfort, desire to connect with others, feelings of social disconnection and use of controlling behaviors.
  12. Talib I, Sundaraj K, Lam CK
    Sci Rep, 2019 11 07;9(1):16166.
    PMID: 31700129 DOI: 10.1038/s41598-019-52536-4
    This study aimed to quantify the association of four anthropometric parameters of the human arm, namely, the arm circumference (CA), arm length (LA), skinfold thickness (ST) and inter-sensor distance (ISD), with amplitude (RMS) and crosstalk (CT) of mechanomyography (MMG) signals. Twenty-five young, healthy, male participants were recruited to perform forearm flexion, pronation and supination torque tasks. Three accelerometers were employed to record the MMG signals from the biceps brachii (BB), brachialis (BRA) and brachioradialis (BRD) at 80% maximal voluntary contraction (MVC). Signal RMS was used to quantify the amplitude of the MMG signals from a muscle, and cross-correlation coefficients were used to quantify the magnitude of the CT among muscle pairs (BB & BRA, BRA & BRD, and BB & BRD). For all investigated muscles and pairs, RMS and CT showed negligible to low negative correlations with CA, LA and ISD (r = -0.0001--0.4611), and negligible to moderate positive correlations with ST (r = 0.004-0.511). However, almost all of these correlations were statistically insignificant (p > 0.05). These findings suggest that RMS and CT values for the elbow flexor muscles recorded and quantified using accelerometers appear invariant to anthropometric parameters.
  13. Hussain J, Sundaraj K, Subramaniam ID, Lam CK
    J Musculoskelet Neuronal Interact, 2019 09 01;19(3):276-285.
    PMID: 31475934
    OBJECTIVE: The objective of this study was to investigate fatigue in the three heads of the triceps brachii (TB) muscle using surface electromyography (sEMG) obtained at 30%, 45% and 60% of maximal voluntary contraction (MVC).

    METHODS: Twenty-five subjects performed isometric elbow extension until failure, and the rate of fatigue (ROF), time to fatigue (TTF) and normalized TTF (NTTF) were statistically analysed. Subsequently, the behaviour of root-mean-square (RMS), mean-power frequency (MPF) and median-power frequency (MDF) under pre-, onset- and post-fatigue conditions were compared.

    RESULTS: The findings indicated that, among the heads, ROF was statistically significant at 30% and 45% MVC (P<0.05) but TTF and NTTF at all intensities was statistically insignificant (P>0.05). For every head, only TTF was statistically significant (P<0.05) at different intensities. MPF and MDF under pre-, onset- and post-fatigue conditions were statistically significant (P<0.05) among the heads at all intensities, whereas RMS showed no such behaviour.

    CONCLUSION: The investigated parameters reveal that the three heads of TB act independently before fatigue onset and appear to work in union after fatigue. Synergist head pairs exhibit similar spectral and temporal behaviour in contrast to the non-synergist TB head pair. We find spectral parameters to be more specific predictors of fatigue.

  14. Talib I, Sundaraj K, Lam CK
    J Musculoskelet Neuronal Interact, 2020 06 01;20(2):194-205.
    PMID: 32481235
    OBJECTIVE: To analyse the influence of muscle fibre axis on the degree of crosstalk in mechanomyographic (MMG) signals during sustained isometric forearm flexion, pronation and supination exercises performed at 80% maximum voluntary contraction (MVC) at an elbow joint angle of 90°.

    METHODS: MMG signals in longitudinal, lateral and transverse directions of muscle fibres were recorded from the elbow flexors of twenty-five male subjects using triaxial accelerometers. Cross-correlation coefficients were used to quantify the degree of crosstalk in all nine possible pairs of fibre axes, all muscle pairs and all exercises.

    RESULTS: MMG root mean square (RMS) was statistically significant among the fibre axes (p<0.05, η2=0.17- 0.34) except for biceps brachii and brachioradialis in supination and brachialis in flexion. Overall mean crosstalk values in the three muscle pairs (biceps brachii & brachialis, brachialis & brachioradialis and brachioradialis & biceps brachii) were found to be 6.09-52.17%, 4.01-61.42% and 2.16-51.85%, respectively. Crosstalk values showed statistical significance among all nine axes pairs (p<0.05, η2=0.16-0.51) except for biceps brachii & brachialis during pronation. The transverse axes pair generated the lowest mean crosstalk values (2.16-9.14%).

    CONCLUSION: MMG signals recorded using accelerometers from the transverse axes of muscle fibres in the elbow flexors are unique and yield the least amount of crosstalk.

  15. Nabi FG, Sundaraj K, Lam CK
    J Pak Med Assoc, 2021 Jan;71(1(A)):41-46.
    PMID: 33484516 DOI: 10.47391/JPMA.156
    OBJECTIVE: Breath sound has information about underlying pathology and condition of subjects. The purpose of this study was to examine asthmatic acuteness levels (Mild, Moderate, Severe) using frequency features extracted from wheeze sounds. Further, analysis was extended to observe behaviour of wheeze sounds in different datasets.

    METHODS: Segmented and validated wheeze sounds was collected from 55 asthmatic patients from the trachea and lower lung base (LLB) during tidal breathing maneuvers. Segmented wheeze sounds have been grouped in to nine datasets based on auscultation location, breath phases and a combination of phase and location. Frequency based features F25, F50, F75, F90, F99 and mean frequency (MF) were calculated from normalized power spectrum. Subsequently, multivariate analysis was performed.

    RESULTS: Generally frequency features observe statistical significance (p < 0.05) for the majority of datasets to differentiate severity level Ʌ = 0.432-0.939, F(12, 196-1534) = 2.731-11.196, p < 0.05, ɳ2 = 0.061-0.568. It was observed that selected features performed better (higher effect size) for trachea related samples Ʌ = 0.432-0.620, F(12, 196-498) = 6.575-11.196, p < 0.05, ɳ2 = 0.386-0.568.

    CONCLUSIONS: The results demonstrated dthat severity levels of asthmatic patients with tidal breathing can be identified through computerized wheeze sound analysis. In general, auscultation location and breath phases produce wheeze sounds with different characteristics.

  16. Talib I, Sundaraj K, Lam CK
    J Biomech Eng, 2021 01 01;143(1).
    PMID: 32691054 DOI: 10.1115/1.4047850
    This study analyzed the crosstalk in mechanomyographic (MMG) signals from elbow flexors during isometric muscle actions from 20% to 100% maximum voluntary isometric contraction (MVIC). Twenty-five young, healthy, male participants performed the isometric elbow flexion, forearm pronation, and supination tasks at an elbow joint angle of 90 deg. The MMG signals from the biceps brachii (BB), brachialis (BRA), and brachioradialis (BRD) muscles were recorded using accelerometers. The cross-correlation coefficient was used to quantify the crosstalk in MMG signals, recorded in a direction transverse to muscle fiber axis, among the muscle pairs (P1: BB and BRA, P2: BRA and BRD, and P3: BB and BRD). In addition, the MMG RMS and MPF were quantified. The mean normalized RMS and mean MPF exhibited increasing (r > 0.900) and decreasing (r 
  17. Hussain J, Sundaraj K, Subramaniam ID, Lam CK
    Front Physiol, 2020;11:112.
    PMID: 32153422 DOI: 10.3389/fphys.2020.00112
    The objective of this study was to investigate the effects of changes in exercise intensity and speed on the three heads of the triceps brachii (TB) during triceps push-down exercise until task failure. Twenty-five subjects performed triceps push-down exercise at three different intensities (30, 45, and 60% 1RM) and speeds (slow, medium, and fast) until failure, and surface electromyography (sEMG) signals were recorded from the lateral, long and medial heads of the TB. The endurance time (ET), number of repetitions (NR) and rate of fatigue (ROF) were analyzed. Subsequently, the root-mean-square (RMS), mean power frequency (MPF) and median frequency (MDF) under no-fatigue (NF) and fatigue (Fa) conditions were statistically compared. The findings reveal that ROF increases with increase in the intensity and speed, and the opposite were obtained for the ET. The ROF in the three heads were comparable for all intensities and speeds. The ROF showed a significant difference (P < 0.05) among the three intensities and speeds for all heads. The three heads showed significantly different (P < 0.05) MPF and MDF values for all the performed exercises under both conditions, whereas the RMS values were significantly different only under Fa conditions. The current observations suggest that exercise intensity and speed affect the ROF while changes in intensity do not affect the MPF and MDF under Fa conditions. The behavior of the spectral parameters indicate that the three heads do not work in unison under any of the conditions. Changes in the speed of triceps push-down exercise affects the lateral and long heads, but changes in the exercise intensity affected the attributes of all heads to a greater extent.
  18. Sahayadhas A, Sundaraj K, Murugappan M
    Australas Phys Eng Sci Med, 2013 Jun;36(2):243-50.
    PMID: 23719977 DOI: 10.1007/s13246-013-0200-6
    Driver drowsiness has been one of the major causes of road accidents that lead to severe trauma, such as physical injury, death, and economic loss, which highlights the need to develop a system that can alert drivers of their drowsy state prior to accidents. Researchers have therefore attempted to develop systems that can determine driver drowsiness using the following four measures: (1) subjective ratings from drivers, (2) vehicle-based measures, (3) behavioral measures and (4) physiological measures. In this study, we analyzed the various factors that contribute towards drowsiness. A total of 15 male subjects were asked to drive for 2 h at three different times of the day (00:00-02:00, 03:00-05:00 and 15:00-17:00 h) when the circadian rhythm is low. The less intrusive physiological signal measurements, ECG and EMG, are analyzed during this driving task. Statistically significant differences in the features of ECG and sEMG signals were observed between the alert and drowsy states of the drivers during different times of day. In the future, these physiological measures can be fused with vision-based measures for the development of an efficient drowsiness detection system.
  19. Sahayadhas A, Sundaraj K, Murugappan M
    Sensors (Basel), 2012 Dec 07;12(12):16937-53.
    PMID: 23223151 DOI: 10.3390/s121216937
    In recent years, driver drowsiness has been one of the major causes of road accidents and can lead to severe physical injuries, deaths and significant economic losses. Statistics indicate the need of a reliable driver drowsiness detection system which could alert the driver before a mishap happens. Researchers have attempted to determine driver drowsiness using the following measures: (1) vehicle-based measures; (2) behavioral measures and (3) physiological measures. A detailed review on these measures will provide insight on the present systems, issues associated with them and the enhancements that need to be done to make a robust system. In this paper, we review these three measures as to the sensors used and discuss the advantages and limitations of each. The various ways through which drowsiness has been experimentally manipulated is also discussed. We conclude that by designing a hybrid drowsiness detection system that combines non-intrusive physiological measures with other measures one would accurately determine the drowsiness level of a driver. A number of road accidents might then be avoided if an alert is sent to a driver that is deemed drowsy.
  20. Yuvaraj R, Murugappan M, Ibrahim NM, Sundaraj K, Omar MI, Mohamad K, et al.
    Int J Psychophysiol, 2014 Dec;94(3):482-95.
    PMID: 25109433 DOI: 10.1016/j.ijpsycho.2014.07.014
    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links