Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Palaniappan R, Sundaraj K, Sundaraj S
    BMC Bioinformatics, 2014;15:223.
    PMID: 24970564 DOI: 10.1186/1471-2105-15-223
    Pulmonary acoustic parameters extracted from recorded respiratory sounds provide valuable information for the detection of respiratory pathologies. The automated analysis of pulmonary acoustic signals can serve as a differential diagnosis tool for medical professionals, a learning tool for medical students, and a self-management tool for patients. In this context, we intend to evaluate and compare the performance of the support vector machine (SVM) and K-nearest neighbour (K-nn) classifiers in diagnosis respiratory pathologies using respiratory sounds from R.A.L.E database.
  2. Ali MA, Sundaraj K, Ahmad RB, Ahamed NU, Islam MA, Sundaraj S
    Technol Health Care, 2014;22(4):617-25.
    PMID: 24990168 DOI: 10.3233/THC-140833
    Normally, surface electromyography electrodes are used to evaluate the activity of superficial muscles during various kinds of voluntary contractions of muscle fiber. The objective of the present study was to investigate the effect of repetitive isometric contractions on the three heads of the triceps brachii muscle during handgrip force exercise.
  3. Talib I, Sundaraj K, Lam CK, Sundaraj S
    J Musculoskelet Neuronal Interact, 2018 12 01;18(4):446-462.
    PMID: 30511949
    This systematic review aims to categorically analyses the literature on the assessment of biceps brachii (BB) muscle activity through mechanomyography (MMG). The application of our search criteria to five different databases identified 319 studies. A critical review of the 48 finally selected records, revealed the diversity of protocols and parameters that are employed in MMG-based assessments of BB muscle activity. The observations were categorized into the following: muscle torque, fatigue, strength and physiology. The available information on the muscle contraction protocol, sensor(s), MMG signal parameters and obtained results were then tabulated based on these categories for further analysis. The review affirms that - 1) MMG is suitable for skeletal muscle activity assessment and can be employed potentially for further investigation of the BB muscle activity and condition (e.g., force, torque, fatigue, and contractile properties), 2) a majority of the records focused on static contractions of the BB, and the analysis of dynamic muscle contractions using MMG is thus a research gap, and 3) very few studies have focused on the analysis of BB muscle activity under externally stimulated contractions. Taken together, the findings of this review on BB activity assessment using MMG affirm the potential of MMG as an alternative tool.
  4. Palaniappan R, Sundaraj K, Sundaraj S
    Comput Methods Programs Biomed, 2017 Jul;145:67-72.
    PMID: 28552127 DOI: 10.1016/j.cmpb.2017.04.013
    BACKGROUND: The monitoring of the respiratory rate is vital in several medical conditions, including sleep apnea because patients with sleep apnea exhibit an irregular respiratory rate compared with controls. Therefore, monitoring the respiratory rate by detecting the different breath phases is crucial.

    OBJECTIVES: This study aimed to segment the breath cycles from pulmonary acoustic signals using the newly developed adaptive neuro-fuzzy inference system (ANFIS) based on breath phase detection and to subsequently evaluate the performance of the system.

    METHODS: The normalised averaged power spectral density for each segment was fuzzified, and a set of fuzzy rules was formulated. The ANFIS was developed to detect the breath phases and subsequently perform breath cycle segmentation. To evaluate the performance of the proposed method, the root mean square error (RMSE) and correlation coefficient values were calculated and analysed, and the proposed method was then validated using data collected at KIMS Hospital and the RALE standard dataset.

    RESULTS: The analysis of the correlation coefficient of the neuro-fuzzy model, which was performed to evaluate its performance, revealed a correlation strength of r = 0.9925, and the RMSE for the neuro-fuzzy model was found to equal 0.0069.

    CONCLUSION: The proposed neuro-fuzzy model performs better than the fuzzy inference system (FIS) in detecting the breath phases and segmenting the breath cycles and requires less rules than FIS.

  5. Ali A, Sundaraj K, Badlishah Ahmad R, Ahamed NU, Islam A, Sundaraj S
    J Hum Kinet, 2015 Jun 27;46:69-76.
    PMID: 26240650 DOI: 10.1515/hukin-2015-0035
    The objective of the present study was to investigate the time to fatigue and compare the fatiguing condition among the three heads of the triceps brachii muscle using surface electromyography during an isometric contraction of a controlled forceful hand grip task with full elbow extension. Eighteen healthy subjects concurrently performed a single 90 s isometric contraction of a controlled forceful hand grip task and full elbow extension. Surface electromyographic signals from the lateral, long and medial heads of the triceps brachii muscle were recorded during the task for each subject. The changes in muscle activity among the three heads of triceps brachii were measured by the root mean square values for every 5 s period throughout the total contraction period. The root mean square values were then analysed to determine the fatiguing condition for the heads of triceps brachii muscle. Muscle fatigue in the long, lateral, and medial heads of the triceps brachii started at 40 s, 50 s, and 65 s during the prolonged contraction, respectively. The highest fatiguing rate was observed in the long head (slope = -2.863), followed by the medial head (slope = -2.412) and the lateral head (slope = -1.877) of the triceps brachii muscle. The results of the present study concurs with previous findings that the three heads of the triceps brachii muscle do not work as a single unit, and the fiber type/composition is different among the three heads.
  6. Ahamed NU, Ahmed N, Alqahtani M, Altwijri O, Ahmad RB, Sundaraj K
    J Phys Ther Sci, 2015 Jan;27(1):39-40.
    PMID: 25642033 DOI: 10.1589/jpts.27.39
    [Purpose] This study investigated the changes in the slope of EMG-time curves (relationship) at the maximal and different levels of dynamic (eccentric and concentric) and static (isometric) contractions. [Subjects and Methods] The subject was a 17 year-old male adolescent. The surface EMG signal of the dominant arm's biceps brachii (BB) was recorded through electrodes placed on the muscle belly. [Results] The results obtained during the contractions show that the regression slope was very close to 1.00 during concentric contraction, whereas those of eccentric and isometric contractions were lower. Significant differences were found for the EMG amplitude and time lags among the contractions. [Conclusion] The results show that the EMG signal of the BB varies among the three modes of contraction and the relationship of the EMG amplitude with a time lag gives the best fit during concentric contraction.
  7. Lam CK, Sundaraj K, Sulaiman MN
    Medicina (Kaunas), 2013;49(1):1-8.
    PMID: 23652710
    The aim of this study was to review the capability of virtual reality simulators in the application of phacoemulsification cataract surgery training. Our review included the scientific publications on cataract surgery simulators that had been developed by different groups of researchers along with commercialized surgical training products, such as EYESI® and PhacoVision®. The review covers the simulation of the main cataract surgery procedures, i.e., corneal incision, capsulorrhexis, phacosculpting, and intraocular lens implantation in various virtual reality surgery simulators. Haptics realism and visual realism of the procedures are the main elements in imitating the actual surgical environment. The involvement of ophthalmology in research on virtual reality since the early 1990s has made a great impact on the development of surgical simulators. Most of the latest cataract surgery training systems are able to offer high fidelity in visual feedback and haptics feedback, but visual realism, such as the rotational movements of an eyeball with response to the force applied by surgical instruments, is still lacking in some of them. The assessment of the surgical tasks carried out on the simulators showed a significant difference in the performance before and after the training.
  8. Hussain J, Sundaraj K, Subramaniam ID
    PLoS One, 2020;15(1):e0228089.
    PMID: 31999750 DOI: 10.1371/journal.pone.0228089
    INTRODUCTION: Cognitive stress (CS) changes the peripheral attributes of a muscle, but its effect on multi-head muscles has not been investigated. The objective of the current research was to investigate the impact of CS on the three heads of the triceps brachii (TB) muscle.

    METHODS: Twenty-five young and healthy university students performed a triceps push-down exercise at 45% one repetition maximum (1RM) with and without CS until task failure, and the rate of fatigue (ROF), endurance time (ET) and number of repetitions (NR) for both exercises were analyzed. In addition, the first and last six repetitions of each exercise were considered non-fatiguing (NF) and fatiguing (Fa), respectively, and the root mean square (RMS), mean power frequency (MPF) and median frequency (MDF) for each exercise repetition were evaluated.

    RESULTS: The lateral and long head showed significant differences (P<0.05) in the ROF between the two exercises, and all the heads showed significant (P<0.05) differences in the RMS between the two exercises under NF conditions. Only the long head showed a significant difference (P<0.05) in the MPF and MDF between the two exercises. CS increases the ET (24.74%) and NR (27%) of the exercise. The three heads showed significant differences (P<0.05) in the RMS, MPF and MDF under all exercise conditions.

    CONCLUSION: A lower ROF was obtained with CS. In addition, the RMS was found to be better approximator of CS, whereas MPF and MDF were more resistant to the effect of CS. The results showed that the three heads worked independently under all conditions, and the non-synergist and synergist head pairs showed similar behavior under Fa conditions. The findings from this study provide additional insights regarding the functioning of each TB head.

  9. Uwamahoro R, Sundaraj K, Subramaniam ID
    Biomed Eng Online, 2021 Jan 03;20(1):1.
    PMID: 33390158 DOI: 10.1186/s12938-020-00840-w
    This research has proved that mechanomyographic (MMG) signals can be used for evaluating muscle performance. Stimulation of the lost physiological functions of a muscle using an electrical signal has been determined crucial in clinical and experimental settings in which voluntary contraction fails in stimulating specific muscles. Previous studies have already indicated that characterizing contractile properties of muscles using MMG through neuromuscular electrical stimulation (NMES) showed excellent reliability. Thus, this review highlights the use of MMG signals on evaluating skeletal muscles under electrical stimulation. In total, 336 original articles were identified from the Scopus and SpringerLink electronic databases using search keywords for studies published between 2000 and 2020, and their eligibility for inclusion in this review has been screened using various inclusion criteria. After screening, 62 studies remained for analysis, with two additional articles from the bibliography, were categorized into the following: (1) fatigue, (2) torque, (3) force, (4) stiffness, (5) electrode development, (6) reliability of MMG and NMES approaches, and (7) validation of these techniques in clinical monitoring. This review has found that MMG through NMES provides feature factors for muscle activity assessment, highlighting standardized electromyostimulation and MMG parameters from different experimental protocols. Despite the evidence of mathematical computations in quantifying MMG along with NMES, the requirement of the processing speed, and fluctuation of MMG signals influence the technique to be prone to errors. Interestingly, although this review does not focus on machine learning, there are only few studies that have adopted it as an alternative to statistical analysis in the assessment of muscle fatigue, torque, and force. The results confirm the need for further investigation on the use of sophisticated computations of features of MMG signals from electrically stimulated muscles in muscle function assessment and assistive technology such as prosthetics control.
  10. Yuvaraj R, Murugappan M, Ibrahim NM, Sundaraj K, Omar MI, Mohamad K, et al.
    J Neural Transm (Vienna), 2015 Feb;122(2):237-52.
    PMID: 24894699 DOI: 10.1007/s00702-014-1249-4
    Parkinson's disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3-AF4, F7-F8, F3-F4, FC5-FC6, T7-T8, P7-P8, and O1-O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities.
  11. Yuvaraj R, Murugappan M, Ibrahim NM, Omar MI, Sundaraj K, Mohamad K, et al.
    J Integr Neurosci, 2014 Mar;13(1):89-120.
    PMID: 24738541 DOI: 10.1142/S021963521450006X
    Deficits in the ability to process emotions characterize several neuropsychiatric disorders and are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion, which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being an activity of central nervous system (CNS), can reflect the underlying true emotional state of a person. This study applied machine-learning algorithms to categorize EEG emotional states in PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order spectra (HOS) has been reported to be a promising approach to classify the emotional states. In this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and support vector machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based features were statistically significant among the six emotional states (p < 0.0001). Classification results shows that using the selected HOS based features instead of power spectrum based features provided comparatively better accuracy for all the six classes with an overall accuracy of 70.10% ± 2.83% and 77.29% ± 1.73% for PD patients and HC in beta (13-30 Hz) band using SVM classifier. Besides, PD patients achieved less accuracy in the processing of negative emotions (sadness, fear, anger and disgust) than in processing of positive emotions (happiness, surprise) compared with HC. These results demonstrate the effectiveness of applying machine learning techniques to the classification of emotional states in PD patients in a user independent manner using EEG signals. The accuracy of the system can be improved by investigating the other HOS based features. This study might lead to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders.
  12. Yuvaraj R, Murugappan M, Mohamed Ibrahim N, Iqbal M, Sundaraj K, Mohamad K, et al.
    Behav Brain Funct, 2014;10:12.
    PMID: 24716619 DOI: 10.1186/1744-9081-10-12
    While Parkinson's disease (PD) has traditionally been described as a movement disorder, there is growing evidence of disruption in emotion information processing associated with the disease. The aim of this study was to investigate whether there are specific electroencephalographic (EEG) characteristics that discriminate PD patients and normal controls during emotion information processing.
  13. Yuvaraj R, Murugappan M, Omar MI, Ibrahim NM, Sundaraj K, Mohamad K, et al.
    Int J Neurosci, 2014 Jul;124(7):491-502.
    PMID: 24168328 DOI: 10.3109/00207454.2013.860527
    Although an emotional deficit is a common finding in Parkinson's disease (PD), its neurobiological mechanism on emotion recognition is still unknown. This study examined the emotion processing deficits in PD patients using electroencephalogram (EEG) signals in response to multimodal stimuli.
  14. Samsudin WS, Sundaraj K, Ahmad A, Salleh H
    Technol Health Care, 2016 Mar 14;24(2):287-94.
    PMID: 26578273 DOI: 10.3233/THC-151103
    An initial assessment method that can classify as well as categorize the severity of paralysis into one of six levels according to the House-Brackmann (HB) system based on facial landmarks motion using an Optical Flow (OF) algorithm is proposed. The desired landmarks were obtained from the video recordings of 5 normal and 3 Bell's Palsy subjects and tracked using the Kanade-Lucas-Tomasi (KLT) method. A new scoring system based on the motion analysis using area measurement is proposed. This scoring system uses the individual scores from the facial exercises and grades the paralysis based on the HB system. The proposed method has obtained promising results and may play a pivotal role towards improved rehabilitation programs for patients.
  15. Palaniappan R, Sundaraj K, Sundaraj S, Huliraj N, Revadi SS
    Clin Respir J, 2016 Jul;10(4):486-94.
    PMID: 25515741 DOI: 10.1111/crj.12250
    BACKGROUND: Monitoring respiration is important in several medical applications. One such application is respiratory rate monitoring in patients with sleep apnoea. The respiratory rate in patients with sleep apnoea disorder is irregular compared with the controls. Respiratory phase detection is required for a proper monitoring of respiration in patients with sleep apnoea.

    AIMS: To develop a model to detect the respiratory phases present in the pulmonary acoustic signals and to evaluate the performance of the model in detecting the respiratory phases.

    METHODS: Normalised averaged power spectral density for each frame and change in normalised averaged power spectral density between the adjacent frames were fuzzified and fuzzy rules were formulated. The fuzzy inference system (FIS) was developed with both Mamdani and Sugeno methods. To evaluate the performance of both Mamdani and Sugeno methods, correlation coefficient and root mean square error (RMSE) were calculated.

    RESULTS: In the correlation coefficient analysis in evaluating the fuzzy model using Mamdani and Sugeno method, the strength of the correlation was found to be r = 0.9892 and r = 0.9964, respectively. The RMSE for Mamdani and Sugeno methods are RMSE = 0.0853 and RMSE = 0.0817, respectively.

    CONCLUSION: The correlation coefficient and the RMSE of the proposed fuzzy models in detecting the respiratory phases reveals that Sugeno method performs better compared with the Mamdani method.

  16. Mohamad Ismail MR, Lam CK, Sundaraj K, Rahiman MHF
    J Musculoskelet Neuronal Interact, 2021 12 01;21(4):481-494.
    PMID: 34854387
    OBJECTIVE: This paper presents the analyses of the fatigue effect on the cross-talk in mechanomyography (MMG) signals of extensor and flexor forearm muscles during pre- and post-fatigue maximum voluntary isometric contraction (MVIC).

    METHODS: Twenty male participants performed repetitive submaximal (60% MVIC) grip muscle contractions to induce muscle fatigue and the results were analyzed during the pre- and post-fatigue MVIC. MMG signals were recorded on the extensor digitorum (ED), extensor carpi radialis longus (ECRL), flexor digitorum superficialis (FDS) and flexor carpi radialis (FCR) muscles. The cross-correlation coefficient was used to quantify the cross-talk values in forearm muscle pairs (MP1, MP2, MP3, MP4, MP5 and MP6). In addition, the MMG RMS and MMG MPF were calculated to determine force production and muscle fatigue level, respectively.

    RESULTS: The fatigue effect significantly increased the cross-talk values in forearm muscle pairs except for MP2 and MP6. While the MMG RMS and MMG MPF significantly decreased (p<0.05) based on the examination of the mean differences from pre- and post-fatigue MVIC.

    CONCLUSION: The presented results can be used as a reference for further investigation of cross-talk on the fatigue assessment of extensor and flexor muscles' mechanic.

  17. Lam CK, Sundaraj K, Sulaiman MN, Qamarruddin FA
    BMC Ophthalmol, 2016;16:88.
    PMID: 27296449 DOI: 10.1186/s12886-016-0269-2
    Computer based surgical training is believed to be capable of providing a controlled virtual environment for medical professionals to conduct standardized training or new experimental procedures on virtual human body parts, which are generated and visualised three-dimensionally on a digital display unit. The main objective of this study was to conduct virtual phacoemulsification cataract surgery to compare performance by users with different proficiency on a virtual reality platform equipped with a visual guidance system and a set of performance parameters.
  18. Ahamed NU, Sundaraj K, Poo TS
    Proc Inst Mech Eng H, 2013 Mar;227(3):262-74.
    PMID: 23662342
    This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.
  19. Yuvaraj R, Murugappan M, Ibrahim NM, Sundaraj K, Omar MI, Mohamad K, et al.
    Int J Psychophysiol, 2014 Dec;94(3):482-95.
    PMID: 25109433 DOI: 10.1016/j.ijpsycho.2014.07.014
    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders.
  20. Fung SK, Sundaraj K, Ahamed NU, Kiang LC, Nadarajah S, Sahayadhas A, et al.
    J Bodyw Mov Ther, 2014 Apr;18(2):220-7.
    PMID: 24725790 DOI: 10.1016/j.jbmt.2013.05.011
    Sports video tracking is a research topic that has attained increasing attention due to its high commercial potential. A number of sports, including tennis, soccer, gymnastics, running, golf, badminton and cricket have been utilised to display the novel ideas in sports motion tracking. The main challenge associated with this research concerns the extraction of a highly complex articulated motion from a video scene. Our research focuses on the development of a markerless human motion tracking system that tracks the major body parts of an athlete straight from a sports broadcast video. We proposed a hybrid tracking method, which consists of a combination of three algorithms (pyramidal Lucas-Kanade optical flow (LK), normalised correlation-based template matching and background subtraction), to track the golfer's head, body, hands, shoulders, knees and feet during a full swing. We then match, track and map the results onto a 2D articulated human stick model to represent the pose of the golfer over time. Our work was tested using two video broadcasts of a golfer, and we obtained satisfactory results. The current outcomes of this research can play an important role in enhancing the performance of a golfer, provide vital information to sports medicine practitioners by providing technically sound guidance on movements and should assist to diminish the risk of golfing injuries.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links