Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Alkhadher SAA, Zakaria MP, Yusoff FM, Kannan N, Suratman S, Keshavarzifard M, et al.
    Mar Pollut Bull, 2015 Dec 15;101(1):397-403.
    PMID: 26478457 DOI: 10.1016/j.marpolbul.2015.10.011
    Sewage pollution is one of major concerns of coastal and shoreline settlements in Southeast Asia, especially Brunei. The distribution and sources of LABs as sewage molecular markers were evaluated in surface sediments collected from Brunei Bay. The samples were extracted, fractionated and analyzed using gas chromatography- mass spectrometry (GC-MS). LABs concentrations ranged from 7.1 to 41.3 ng g(-1) dry weight (dw) in surficial sediments from Brunei Bay. The study results showed LABs concentrations variably due to the LABs intensity and anthropogenic influence along Brunei Bay in recent years. The ratio of Internal to External isomers (I/E ratio) of LABs in sediment samples from Brunei Bay ranged from 0.56 to 2.17 along Brunei Bay stations, indicating that the study areas were receiving primary and secondary effluents. This is the first study carried out to assess the distribution and sources of LABs in surface sediments from Brunei Bay, Brunei.
  2. Alkhadher SAA, Suratman S, Zakaria MP
    Environ Monit Assess, 2023 May 24;195(6):720.
    PMID: 37222826 DOI: 10.1007/s10661-023-11310-w
    One of the molecular chemical markers used to identify anthropogenic inputs is linear alkylbenzenes (LABs) that cause serious impacts in the bays and coastal ecosystems. The surface sediments samples collected from the East Malaysia, including Brunei bay to estimate the LABs concentration and distribution as molecular markers of anthropogenic indicators. Gas chromatography-mass spectrometry (GC-MS) was used after purification, fractionation the hydrocarbons in the sediment samples to identify the sources of LABs. The analysis of variance (ANOVA) and Pearson correlation coefficient were applied to analyze the difference between sampling stations' significance at p S, homologs C13/C12, and internal to external (I/E) congeners have used to assess the LABs degradation rates as well as the effectiveness of sewage treatment. Results of this study showed that the LABs concentration ranged between 7.1 to 41.3 ng g-1 dw, in the investigated stations. The majority of sample sites exhibited a considerable input of C13-LABs homologs, and LABs homologs differed significantly. The estimated LABs ratios (I/E), which ranged between 0.6 and 2.2, demonstrated the effluents with primary and less secondary sources are released into the bay waters. The degradation of LABs were up to 42% in the interrogated locations. The conclusion is that the wastewater treatment system needs to be improved, and that LABs molecular markers are highly effective in tracing anthropogenic sewage contamination.
  3. Alkhadher SAA, Suratman S, Mohd Sallan MIB
    J Environ Manage, 2023 Nov 01;345:118464.
    PMID: 37454570 DOI: 10.1016/j.jenvman.2023.118464
    The spatial and temporal distributions of trace metals in dissolved forms mainly result from anthropogenic and lithogenic contributions. Surface water samples (∼0.5 m) were collected monthly at respective stations from Setiu Wetland. In this study, the behaviour of trace metals in the dissolved phases along the water column from sampling sites in the Setiu Wetland, Malaysia was investigated. In addition, dissolved organic carbon (DOC) and physical parameters such as salinity, temperature, pH and dissolved oxygen (DO) of the surface water were measured in order to evaluate the relationship between trace metals fractionation with different water quality parameters. Size fractionation study of dissolved trace metals using ultrafiltration technique were also carried out and analysed using inductively coupled plasma mass spectrometry (ICP-MS). Correlation of trace metals with other measured parameters was made to furthermore understand the dynamics of trace metals and its fractionated components in this area. The concentration of dissolved trace metals was in the range of 0.001-0.16 μg/L for Cd, 0.12-2.81 μg/L for Cu, 0.01-1.84 μg/L for Pb, 3-17 μg/L for Fe and 1-34 μg/L for Zn, suggesting the input of anthropogenic sources for trace metals such as municipal, industrial, agricultural and domestic discharge. The periodic monitoring and evaluation of trace metals in wetlands and protected tropical areas is highly recommended.
  4. Alkhadher SAA, Sidek LM, Zakaria MP, A Al-Garadi M, Suratman S
    Environ Geochem Health, 2024 Mar 15;46(4):140.
    PMID: 38488953 DOI: 10.1007/s10653-024-01916-5
    Organic pollution continues to be an important worldwide obstacle for tackling health and environmental concerns that require ongoing and prompt response. To identify the LAB content levels as molecular indicators for sewage pollution, surface sediments had obtained from the South region of Malaysia. The origins of the LABs were identified using gas chromatography-mass spectrometry (GC-MS). ANOVA and a Pearson correlation coefficient at p S) chains are used to identify the effectiveness of wastewater treatments. According to statistical analysis, the range of LAB level at the stations was 67.4 to 188.7 ng g-1dw. A significant difference was observed between LAB homologs (p 
  5. Alsalahi MA, Latif MT, Ali MM, Magam SM, Wahid NB, Khan MF, et al.
    Mar Pollut Bull, 2014 Mar 15;80(1-2):344-50.
    PMID: 24373668 DOI: 10.1016/j.marpolbul.2013.12.019
    This study aims to determine the levels of methylene blue active substances (MBAS) and ethyl violet active substances (EVAS) as anionic surfactants and of disulphine blue active substances (DBAS) as cationic surfactants in the surface microlayer (SML) around an estuarine area using colorimetric methods. The results show that the concentrations of surfactants around the estuarine area were dominated by anionic surfactants (MBAS and EVAS) with average concentrations of 0.39 and 0.51 μmol L⁻¹, respectively. There were significant between-station differences in surfactant concentrations (p<0.05) with higher concentrations found at the stations near the sea. The concentration of surfactants was higher during the rainy season than the dry season due to the influence of runoff water. Further investigation using total organic carbon (TOC) and total organic nitrogen (TON) shows that there is a significant correlation (p<0.05) between both anionic and cationic surfactants and the TON concentration.
  6. Azmi WN, Latif MT, Wahid NB, Razak IS, Suratman S
    Bull Environ Contam Toxicol, 2014 Mar;92(3):306-10.
    PMID: 24414132 DOI: 10.1007/s00128-013-1194-1
    A study has been conducted to determine the composition of surfactants in runoff water in the semi-urban area of Bandar Baru Bangi, Selangor, Malaysia. Runoff samples were collected from five different locations with contrasting functional activities and the colorimetric method was used to analyze the concentrations of surfactants as methylene blue active substances (MBAS) for anionic surfactants and as disulphine blue active substances (DBAS) for cationic surfactants. The results showed that the highest surfactant concentrations of MBAS and DBAS in runoff water were recorded in the samples collected at the residential area, with the concentrations of 3.192 ± 0.727 and 0.170 ± 0.028 μmol/L, respectively. Anionic surfactants as MBAS were found to dominate the concentration of surfactants in both runoff and rainwater. The concentrations of both anionic and cationic surfactants in runoff water were recorded as being higher than in rainwater.
  7. Farah Naquiah MZ, James RJ, Suratman S, Lee LS, Mohd Hafidz MI, Salleh MZ, et al.
    Behav Brain Funct, 2016 Aug 31;12(1):23.
    PMID: 27582026 DOI: 10.1186/s12993-016-0107-y
    Heroin addiction is a growing concern, affecting the socioeconomic development of many countries. Little is known about transgenerational effects on phenotype changes due to heroin addiction. This study aims to investigate changes in level of anxiety and aggression up to four different generations of adult male rats due to paternal exposure to heroin.
  8. Hee YY, Weston K, Suratman S, Akhir MF, Latif MT, Valliyodan S
    Environ Sci Pollut Res Int, 2023 May;30(24):65351-65363.
    PMID: 37081368 DOI: 10.1007/s11356-023-26948-9
    Dissolved oxygen is an ecologically critical variable with the prevalence of hypoxia one of the key global anthropogenic issues. A study was carried out to understand the causes of low dissolved oxygen in Brunei Bay, northwest Borneo. Hypoxia was widespread in bottom waters in the monsoonal dry season with dissolved oxygen 
  9. Hee YY, Hanif NM, Weston K, Latif MT, Suratman S, Rusli MU, et al.
    Sci Total Environ, 2023 Dec 01;902:166153.
    PMID: 37562616 DOI: 10.1016/j.scitotenv.2023.166153
    Atmospheric microplastic transport is an important delivery pathway with the deposition of microplastics to ecologically important regions raising environmental concerns. Investigating atmospheric delivery pathways and their deposition rates in different ecosystems is necessary to understanding its global impact. In this study, atmospheric deposition was collected at three sites in Malaysia, two urban and one pristine, covering the Northeast and Southwest monsoons to quantify the role of this pathway in Southeast Asia. Air mass back trajectories showed long-range atmospheric transport of microplastics to all sites with atmospheric deposition varying from 114 to 689 MP/m2/day. For the east coast of Peninsular Malaysia, monsoonal season influenced microplastic transport and deposition rate with peak microplastic deposition during the Northeast monsoon due to higher wind speed. MP morphology combined with size fractionation and plastic type at the coastal sites indicated a role for long-range marine transport of MPs that subsequently provided a local marine source to the atmosphere at the coastal sites.
  10. Jaafar SA, Latif MT, Razak IS, Shaharudin MZ, Khan MF, Wahid NBA, et al.
    Mar Pollut Bull, 2016 Aug 15;109(1):480-489.
    PMID: 27230987 DOI: 10.1016/j.marpolbul.2016.05.017
    This study determined the effect of monsoonal changes on the composition of atmospheric surfactants in coastal areas. The composition of anions (SO4(2-), NO3(-), Cl(-), F(-)) and the major elements (Ca, K, Mg, Na) in aerosols were used to determine the possible sources of surfactants. Surfactant compositions were determined using a colorimetric method as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS). The anion and major element compositions of the aerosol samples were determined by ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results indicated that the concentrations of surfactant in aerosols were dominated by MBAS (34-326pmolm(-3)). Monsoonal changes were found to significantly affect the concentration of surfactants. Using principal component analysis-multiple linear regressions (PCA-MLR), major possible sources for surfactants in the aerosols were motor vehicle emissions, secondary aerosol and the combustion of biomass along with marine aerosol.
  11. Koh MK, Sathiamurthy E, Suratman S, Tahir NM
    Environ Monit Assess, 2012 Dec;184(12):7653-64.
    PMID: 22302401
    Influences of river hydrodynamic behaviours on hydrochemistry (salinity, pH, dissolved oxygen saturations and dissolved phosphorus) were evaluated through high spatial and temporal resolution study of a sandbar-regulated coastal river. River hydrodynamic during sandbar-closed event was characterized by minor dependency on tidal fluctuations, very gradual increase of water level and continual low flow velocity. These hydrodynamic behaviours established a hydrochemistry equilibrium, in which water properties generally were characterized by virtual absence of horizontal gradients while vertical stratifications were significant. In addition, the river was in high trophic status as algae blooms were visible. Conversely, river hydrodynamic in sandbar-opened event was tidal-controlled and showed higher flow velocity. Horizontal gradients of water properties became significant while vertically more homogenised and with lower trophic status. In essence, this study reveals that estuarine sandbar directly regulates river hydrodynamic behaviours which in turn influences river hydrochemistry.
  12. Magam SM, Masood N, Alkhadher SAA, Alanazi TYA, Zakaria MP, Sidek LM, et al.
    Environ Geochem Health, 2024 Jan 16;46(2):38.
    PMID: 38227164 DOI: 10.1007/s10653-023-01828-w
    The seasonal variation of petroleum pollution including n-alkanes in surface sediments of the Selangor River in Malaysia during all four climatic seasons was investigated using GC-MS. The concentrations of n-alkanes in the sediment samples did not significantly correlate with TOC (r = 0.34, p > 0.05). The concentrations of the 29 n-alkanes in the Selangor River ranged from 967 to 3711 µg g-1 dw, with higher concentrations detected during the dry season. The overall mean per cent of grain-sized particles in the Selangor River was 85.9 ± 2.85% sand, 13.5 ± 2.8% clay, and 0.59 ± 0.34% gravel, respectively. n-alkanes are derived from a variety of sources, including fresh oil, terrestrial plants, and heavy/degraded oil in estuaries. The results of this study highlight concerns and serve as a warning that hydrocarbon contamination is affecting human health. As a result, constant monitoring and assessment of aliphatic hydrocarbons in coastal and riverine environments are needed.
  13. Mohd Tahir N, Pang SY, Abdullah NA, Suratman S
    Environ Monit Assess, 2013 Dec;185(12):10209-16.
    PMID: 23856812 DOI: 10.1007/s10661-013-3325-x
    Near-shore surface sediment was collected from five stations off Redang Island located on the eastern coast of Peninsular Malaysia. Freeze-dried sediments were Soxhlet extracted and then fractionated using column chromatography into aliphatic and polar fractions. Determination of these fractions was carried out using gas chromatography mass spectrometry. The concentration of total resolved aliphatic hydrocarbons in sediments ranged from 157 to 308 ng/g. The distribution of aliphatic fraction showed the presence of n-alkanes ranging from nC15 to nC33 with a minor odd-to-even predominance exhibiting carbon maximum, depending on station, at nC17, nC26, nC29 or nC31. Calculation of Carbon Preference Index (CPI) for CPI(15-33) gave values ranging from 1.09 to 1.46. n-Alkanol in all sediment exhibits even-to-odd carbon predominance ranging from nC16 to nC28 and maximising at nC22. n-Fatty acids distribution ranged from nC14 to nC24 with a dominant maximum at nC16 and exhibiting high values of short chain fatty acids (≤nC20) to long chain fatty acids (>nC20) ratios. Unsaturated fatty acids, particularly nC16:1 and nC18:1 is also ubiquitous in all samples. Cholesterol is the most abundant compound amongst the sterol group ranging from 42.8 to 62.6% of the total sterols. β-Sitosterol, brassicasterol and stigmasterol, are also present but of relatively lower amount. These observations suggest that the aliphatic lipids and sterols in the study area originate, mainly, from biogenic sources of marine microbial with minor contribution from epiticular waxes of terrestrial plants.
  14. Mohd Tahir N, Poh SC, Suratman S, Ariffin MM, Shazali NA, Yunus K
    Bull Environ Contam Toxicol, 2009 Aug;83(2):199-203.
    PMID: 19436928 DOI: 10.1007/s00128-009-9751-3
    Results from the present study in Kuala Terengganu, Malaysia indicated a significant spatial variation but generally the total suspended particulate concentrations (mean = 17.2-148 microg/m(3)) recorded were below the recommended Malaysia guideline for total suspended particulate (mean of 24-h measurement = 260 microg/m(3)). Some of the elemental composition of particulate aerosol is clearly affected by non crustal sources, e.g. vehicular emission sources. Based on correlation and enrichment analyses, the elements could be grouped into two i.e. Pb, Cd and Zn group with sources from vehicular emission (r > 0.6; enrichment factor > 10) and Al, Fe, Mn and Cr group that appears to be of crustal origin (r > 0.6; enrichment factor < 10). It can also be concluded that the mean levels of Pb (1 ng/m(3)), Cd (0.02 ng/m(3)) and Zn (2 ng/m(3)) in the study area are generally lower than other urban areas in Malaysia (Pb < 181 ng/m(3); Cd < 6 ng/m(3); Zn < 192 ng/m(3)).
  15. Mustafa S, Bahar A, Aziz ZA, Suratman S
    J Environ Manage, 2016 Jan 01;165:159-166.
    PMID: 26433356 DOI: 10.1016/j.jenvman.2015.09.026
    Analytical study of the influence of both the pumping well discharge rate and pumping time on contaminant transport and attenuation is significant for hydrological and environmental science applications. This article provides an analytical solution for investigating the influence of both pumping time and travelling time together for one-dimensional contaminant transport in riverbank filtration systems by using the Green's function approach. The basic aim of the model is to understand how the pumping time and pumping rate, which control the travelling time, can affect the contaminant concentration in riverbank filtration systems. Results of analytical solutions are compared with the results obtained using a MODFLOW numerical model. Graphically, it is found that both analytical and numerical solutions have almost the same behaviour. Additionally, the graphs indicate that any increase in the pumping rate or simulation pumping time should increase the contamination in groundwater. The results from the proposed analytical model are well matched with the data collected from a riverbank filtration site in France. After this validation, the model is then applied to the first pilot project of a riverbank filtration system conducted in Malaysia. Sensitivity analysis results highlight the importance of degradation rates of contaminants on groundwater quality, for which higher utilization rates lead to the faster consumption of pollutants.
  16. Pang SY, Suratman S, Tay JH, Mohd Tahir N
    Mar Pollut Bull, 2021 Oct;171:112736.
    PMID: 34325152 DOI: 10.1016/j.marpolbul.2021.112736
    The distribution of aliphatic hydrocarbons in three sediment cores from Brunei Bay was investigated in order to understand their sources and the biogeochemical processes of these hydrocarbons. The total concentrations of C15 to C37n-alkanes ranged from 0.70 to 16.5 μg g-1. Traces of hopanes with C29-C31 carbon homologs were detected in the study area. The carbon preference index (CPI15-37) ranged from 1.23 to 3.42 coupled with the natural n-alkane ratio (NAR19-32) ratios (1.52 to 5.34), and the presence of unresolved complex mixtures and hopanes, suggested slight contamination by anthropogenic hydrocarbons, presumably derived from activities along the coasts. The presence of C27 trisnorhopene and diploptene, as well as their association with long-chain and short-chain n-alkanes, revealed a depositional environment of organic matter in the sediment cores.
  17. Pang SY, Tay JH, Suratman S, Simoneit BRT, Mohd Tahir N
    Mar Pollut Bull, 2020 Jul;156:111269.
    PMID: 32510409 DOI: 10.1016/j.marpolbul.2020.111269
    Brunei Bay is one of the most important marine environments of East Malaysia (South China Sea), covering many productive ecosystems with activities including fisheries, tourism, and main shipping lanes for petroleum transfers. Evaluation of the sources and distributions of steroids in the surface sedimentary organic matter was carried out by gas chromatography-mass spectrometry (GC-MS). The concentrations of the total identified sterols (TIS) ranged between 0.81 and 12.69 μg g-1 dry weight, and the total sterones were between 0.11 and 5.66 μg g-1 dry weight. The coprostanol level was comparatively low (<0.10 μg g-1), and the multi-biomarker proxies indicated that the region did not exhibit significant contamination from sewage effluents. Principal component analysis (PCA) revealed the coastal environment of the study area was dominated by allochthonous (mainly terrestrial) organic matter input.
  18. Pang SY, Suratman S, Latif MT, Khan MF, Simoneit BRT, Mohd Tahir N
    Environ Sci Pollut Res Int, 2022 Mar;29(11):15849-15862.
    PMID: 34636003 DOI: 10.1007/s11356-021-16762-6
    Surface sediments along the Southern Terengganu coast (≤7 km from the coast) were analyzed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of 16 USEPA priority polycyclic aromatic hydrocarbons (ΣPAH16) ranged from 2.59 to 155 ng g-1 and their respective alkylated ranged between 8.80 and 24.90 ng g-1. Traces of acephenanthrylene, benzo[c]phenanthrene, thiophenic PAH, and benzonaphthofuran were identified. PAH diagnostic ratios and cross-plots revealed that these sedimentary PAH compounds are derived mainly from pyrogenic sources, primarily from biomass burning and petroleum combustion residues with minor petrogenic input. The high correlations between pyrogenic PAHs to total PAHs (r >0.73, p <0.5), and the Bap/Bep ratio to total PAHs (r = 0.88, p <0.5), suggest that atmospheric deposition and urban runoff are the main deposition pathways. The concentrations of the PAHs in the southern South China Sea fall in the moderate contamination range of 100-1000 ng g-1.
  19. Poh SC, Ng NCW, Suratman S, Mathew D, Mohd Tahir N
    Environ Monit Assess, 2018 Dec 04;191(1):3.
    PMID: 30515582 DOI: 10.1007/s10661-018-7128-y
    The objective of this study was to identify the spatial and temporal variabilities of selected nutrients in the Setiu Wetlands Lagoon (SWL), Malaysia. Water samples were collected quarterly at ten monitoring sites. This study presents results from a 10-year field investigation (2003 to 2010 and 2014 to 2015) of water quality in the SWL. For the spatial pattern, four clusters were identified with hierarchical cluster analysis. Analysis of the temporal trend shows that the high total suspended solid loading in 2010 was due to large-scale land clearing upstream of the SWL. The enrichment of ammonium after 2010 could plausibly be due to land-based aquaculture diffuse discharges. In 2005-2007, expansion of oil palm plantations within the Setiu catchment had doubled the phosphorus concentration in the SWL. The natural and anthropogenic alterations of the lagoon inlets profoundly influenced the spatial distribution patterns of nutrients in the SWL. These results suggest that intense anthropogenic disturbances close to the SWL accounted for the water quality deterioration.
  20. Shaharom S, Latif MT, Khan MF, Yusof SNM, Sulong NA, Wahid NBA, et al.
    Environ Sci Pollut Res Int, 2018 Sep;25(27):27074-27089.
    PMID: 30019134 DOI: 10.1007/s11356-018-2745-0
    This study aims to determine the concentrations of surfactants in the surface microlayer (SML), subsurface water (SSW) and fine mode aerosol (diameter size
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links