Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Usup G, Leaw CP, Cheah MY, Ahmad A, Ng BK
    Toxicon, 2004 Jul;44(1):37-43.
    PMID: 15225560
    This study was carried out to characterize the detection and quantitation of several paralytic shellfish poisoning (PSP) toxin congeners using a receptor binding assay (RBA). This involved competitive binding of the toxin congeners against tritium-labeled STX for receptor sites on rat brain sodium channels. Competitive binding curves were described by a four-parameter logistic equation. Half-saturation values (EC(50)) ranged from 4.38 nM for STX to 142 nM for GTX5. Receptor binding affinity was in the order STX>GTX1/4>neoSTX>GTX2/3>dcSTX>GTX5, and this was similar to the order of mouse toxicity of these congeners. Predicted toxin concentrations from observed STXeq values and EC(50) ratios relative to STX were within 20% or better of the actual concentrations used in the assay. In contrast predicted toxin concentrations using mouse toxicity ratios relative to STX did not provide a good match to actual concentrations, except for GTX1/4. This study has shown that the rat brain sodium channel RBA will provide a reliable integration of total toxicity of various PSP toxin congeners present in a sample.
  2. Ahmad A, Dada AC, Usup G
    PMID: 24974655
    Partial gene sequences of phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit (rpoA) were evaluated for species delineation and detection of recombination among enterococci populations recovered from a bathing beach impacted by low tide river flow. At inter-species level, a maximum similarity of 86.5% and 94.8% was observed among the enterococci pheS and rpoA sequence, respectively. A superimposed plot of delimited pairwise similarity values obtained for 266 pair-wise observations revealed that while there was a harmony between species identity obtained from both genes, pheS was more discriminatory than rpoA. The difference was more pronounced for inter-species comparison. A number of putative recombination events between indigenous and non-indigenous strains was detected based on a library of aligned sequences. Virulence genes cyl, esp, gelE and asa were detected in 7, 22, 100 and 63%, respectively among river isolates but at lower proportion of 0, 20, 67 and 42%, respectively among beach water isolates. Random amplified polymorphic DNA profiling presented evidence suggesting low tide river as a source of fecal enterococci entering the recreation beach water. Multilocus sequence typing analysis of a number of Enterococcus faecalis isolates presented four sequence types, ST59, 117, 181 and 474. The presence of genetically diverse fecal enterococci with associated virulence traits and a background of recombination events in surface recreational water could present a potential public health risk.
  3. Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, et al.
    Mar Drugs, 2020 Feb 05;18(2).
    PMID: 32033403 DOI: 10.3390/md18020103
    Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
  4. Mokhtari M, Ghaffar MA, Usup G, Cob ZC
    PLoS One, 2015;10(1):e0117467.
    PMID: 25629519 DOI: 10.1371/journal.pone.0117467
    In tropical regions, different species of fiddler crabs coexist on the mangrove floor, which sometimes makes it difficult to define species-specific habitat by visual inspection. The aim of this study is to find key environmental parameters which affect the distribution of fiddler crabs and to determine the habitats in which each species was most abundant. Crabs were collected from 19 sites within the mudflats of Sepang-Lukut mangrove forest. Temperature, porewater salinity, organic matter, water content, carbon and nitrogen content, porosity, chlorophyll content, pH, redox potential, sediment texture and heavy metals were determined in each 1 m2 quadrate. Pearson correlation indicated that all sediment properties except pH and redox potential were correlated with sediment grain size. Canonical correspondence analysis (CCA) indicated that Uca paradussumieri was negatively correlated with salinity and redox potential. Sand dwelling species, Uca perplexa and Uca annulipes, were highly dependent on the abundance of 250 μm and 150 μm grain size particles in the sediment. Canonical Discriminative Analysis (CDA) indicated that variation in sediment grain size best explained where each crab species was most abundant. Moreover, U. paradussumieri commonly occupies muddy substrates of low shore, while U. forcipata lives under the shade of mangrove trees. U. annulipes and U. perplexa with the high number of spoon tipped setae on their second maxiliped are specialized to feed on the sandy sediments. U. rosea and U. triangularis are more common on muddy sediment with high sediment density. In conclusion, sediment grain size that influences most sediment properties acts as a main factor responsible for sediment heterogeneity. In this paper, the correlation between fiddler crab species and environmental parameters, as well as the interaction between sediment characteristics, was explained in order to define the important environmental factors in fiddler crab distributions.
  5. Danish-Daniel M, Han Ming G, Noor ME, Yeong YS, Usup G
    Genom Data, 2016 Dec;10:12-4.
    PMID: 27625991 DOI: 10.1016/j.gdata.2016.08.015
    Mameliella alba strain UMTAT08 was isolated from clonal culture of paralytic shellfish toxin producing dinoflagellate, Alexandrium tamiyavanichii. Genome of the strain UMTAT08 was sequenced in order to gain insights into the dinoflagellate-bacteria interactions. The draft genome sequence of strain UMTAT08 contains 5.84Mbp with an estimated G + C content of 65%, 5717 open reading frames, 5 rRNAs and 49 tRNAs. It contains genes related to nutrients uptake, quorum sensing and environmental tolerance related genes. Gene clusters for the biosynthesis of type 1 polyketide synthase, bacteriocin, microcin, terpene and ectoine were also identified. This is suggesting that the bacterium possesses diverse adaptation strategy to survive within the dinoflagellate phycosphere. The draft genome sequence and annotation have been deposited at DDBJ/EMBL/GenBank under the accession number JSUQ00000000.
  6. Mokhtari M, Abd Ghaffar M, Usup G, Che Cob Z
    Biology (Basel), 2016;5(1).
    PMID: 26797647 DOI: 10.3390/biology5010007
    In mangrove ecosystems, litter fall accumulates as refractory organic carbon on the sediment surface and creates anoxic sediment layers. Fiddler crabs, through their burrowing activity, translocate oxygen into the anoxic layers and promote aerobic respiration, iron reduction and nitrification. In this study, the effects of four species of fiddler crabs (Uca triangularis, Uca rosea, Uca forcipata and Uca paradussumieri) on organic content, water content, porosity, redox potential and solid phase iron pools of mangrove sediments were investigated. In each crab's habitat, six cores down to 30 cm depth were taken from burrowed and non-burrowed sampling plots. Redox potential and oxidized iron pools were highest in surface sediment, while porosity, water and organic content were higher in deeper sediment. Reduced iron (Fe (II)) and redox potential were significantly different between burrowed and non-burrowed plots. Crab burrows extend the oxidized surface layer down to 4 cm depth and through the oxidation effect, reduce the organic content of sediments. The effects of burrows varied between the four species based on their shore location. The oxidation effect of burrows enhance the decomposition rate and stimulate iron reduction, which are processes that are expected to play an important role in biogeochemical properties of mangrove sediments.
  7. Suriyanti SN, Usup G
    Toxicon, 2015 Dec 15;108:257-63.
    PMID: 26541573 DOI: 10.1016/j.toxicon.2015.10.017
    Screening of the occurrence of potentially toxic diatoms was carried out at two sites of cage cultures in Tebrau Straits, Johor. Phytoplankton samples from Sungai Pendas and Teluk Sengat were collected using a 20 μm mesh plankton net and salinity was recorded in-situ. Nitzschia and Pseudo-nitzschia cells were isolated and established into clonal cultures. All cultures were tested for domoic acid using HPLC-UV analysis and verified by LC-MS analysis. Three Nitzschia spp. and one Pseudo-nitzschia sp. were identified from these locations. Toxic and non-toxic strains of Nitzschia navis-varingica are found at the cage culture areas. Cellular toxin content in the toxic strain of N. navis-varingica is 1.8 pg cell(-1). This is a new record from Malaysia and this species was isolated from estuarine water with salinity 28 PSU. The discovery of toxic Nitzschia species in Tebrau Straits indicates the potential for domoic acid accumulation in seafood.
  8. Pin LC, Teen LP, Ahmad A, Usup G
    Mar Biotechnol (NY), 2001 May;3(3):246-55.
    PMID: 14961362
    The genus Ostreopsis is an important component of benthic and epiphytic dinoflagellate assemblages in coral reefs and seaweed beds of Malaysia. Members of the species may produce toxins that contribute to ciguatera fish poisoning. In this study, two species have been isolated and cultured, Ostreopsis ovata and Ostreopsis lenticularis. Analyses of the 5.8S subunit and internal transcribed spacer regions ITS1 and ITS2 of the ribosomal RNA gene sequences of these two species showed that they are separate species, consistent with morphological designations. The nucleotide sequences of the 5.8S subunit and ITS1 and ITS2 regions of the rRNA gene were also used to evaluate the interpopulation and intrapopulation genetic diversity of O. ovata found in Malaysian waters. Results showed a low level of sequence divergence within populations. At the interpopulation level, the rRNA gene sequence distinguished two groups of genetically distinct strains, representative of a Malacca Straits group (isolates from Port Dickson) and a South China Sea group (isolates from Pulau Redang and Kota Kinabalu). Part of the sequences in the ITS regions may be useful in the design of oligonucleotide probes specific for each group. Results from this study show that the ITS regions can be used as genetic markers for taxonomic, biogeographic, and fine-scale population studies of this species.
  9. Danish-Daniel M, Ming GH, Mohd Noor ME, Sung YY, Usup G
    Genome Announc, 2016 Oct 6;4(5).
    PMID: 27795265 DOI: 10.1128/genomeA.01106-16
    Bacillus sp. strain UMTAT18 was isolated from the harmful dinoflagellate Alexandrium tamiyavanichii Its genome consists of 5,479,367 bp with 5,546 open reading frames, 102 tRNAs, and 29 rRNAs. Gene clusters for biosynthesis of nonribosomal peptides, bacteriocin, and lantipeptide were identified. It also contains siderophore and genes related to stress tolerance.
  10. Danish-Daniel M, Gan HY, Gan HM, Saari NA, Usup G
    Genome Announc, 2014;2(5).
    PMID: 25301654 DOI: 10.1128/genomeA.01015-14
    Nitratireductor basaltis strain UMTGB225 is a Gram-negative bacterium isolated from a marine tunicate found in Bidong Island, Terengganu, Malaysia. In this study, the genome of Nitratireductor basaltis UMTGB225 was sequenced to gain insight into the role of this bacterium and its association with tunicate hosts in a coral reef habitat.
  11. Gan HY, Noor ME, Saari NA, Musa N, Mustapha B, Usup G, et al.
    Genome Announc, 2015;3(2).
    PMID: 25814609 DOI: 10.1128/genomeA.00210-15
    Vibrio campbellii strain UMTGB204 was isolated from a green barrel tunicate. The genome of this strain comprises 5,652,224 bp with 5,014 open reading frames, 9 rRNAs, and 116 tRNAs. It contains genes related to virulence and environmental tolerance. Gene clusters for the biosynthesis of nonribosomal peptides and bacteriocin were also identified.
  12. Usup G, Kulis DM, Anderson DM
    Nat. Toxins, 1994;2(5):254-62.
    PMID: 7866660
    Toxin production of a Malaysian isolate of the toxic red tide dinoflagellate Pyrodinium bahamense var. compressum was investigated at various stages of the batch culture growth cycle and under growth conditions affected by temperature, salinity, and light intensity variations. In all the experiments conducted, only 5 toxins were ever detected. Neosaxitoxin (NEO) and gonyautoxin V (GTX5) made up 80 mole percent or more of the cellular toxin content and saxitoxin (STX), GTX6 and decarbamoylsaxitoxin (dcSTX) made up the remainder. No gonyautoxins I-IV or C toxins were ever detected. In nutrient-replete batch cultures, toxin content rapidly peaked during early exponential phase and just as rapidly declined prior to the onset of plateau phase. Temperature had a marked effect on toxin content, which increased 3-fold as the temperature decreased from the optimum of 28 degrees C to 22 degrees C. Toxin content was constant at salinities of 24% or higher, but increased 3-fold at 20%. Toxin content decreased 2-fold and chlorophyll content increased 3-fold when light intensity was reduced from 90 to 15 microE m-2 s-1. This accompanied a 30% decrease in growth rate. Toxin composition (mole % individual toxin cell-1) remained constant throughout the course of the nutrient-replete culture and during growth at various salinities, but varied significantly with temperature and light intensity changes. At 22 degrees C, GTX5 was 25 mole % and NEO was 65 mole %, while at 34 degrees C, GTX5 increased to 55 mole % and NEO decreased proportionally to 40 mole %. When light intensity was reduced from 90 to 15 microE m-2 s-1, NEO decreased from 55 to 38 mole %, while GTX5 increased from 40 to 58 mole %. These data suggest that low light and high temperature both somehow enhance sulfo-transferase activity.(ABSTRACT TRUNCATED AT 250 WORDS)
  13. Yong HL, Mustapa NI, Lee LK, Lim ZF, Tan TH, Usup G, et al.
    Harmful Algae, 2018 09;78:56-68.
    PMID: 30196925 DOI: 10.1016/j.hal.2018.07.009
    Few studies have investigated the effect of fine-scale habitat differences on the dynamics of benthic harmful dinoflagellate assemblages. To determine how these microhabitat differences affect the distribution and abundance of the major benthic harmful dinoflagellate genera in a tropical coral reef ecosystem, a field study was undertaken between April-September 2015 and January 2016 on the shallow reef flat of the fringing reef of Rawa Island, Terengganu, Malaysia. Sampling of benthic dinoflagellates was carried out using an artificial substrate sampling method (fiberglass screens). Benthic microhabitats surrounding the sampling screens were characterized simultaneously from photographs of a 0.25-m2 quadrat based on categories of bottom substrate types. Five taxonomic groups of benthic dinoflagellates, Ostreopsis, Gambierdiscus, Prorocentrum, Amphidinium, and Coolia were identified, and cells were enumerated using a light microscope. The results showed Gambierdiscus was less abundant than other genera throughout the study period, with maximum abundance of 1.2 × 103 cells 100 cm-2. While most taxa were present on reefs with high coral cover, higher cell abundances were observed in reefs with high turf algal cover and coral rubble, with the exception of Ostreopsis, where the abundance reached a maximum of 3.4 × 104 cells 100 cm-2 in habitats with high coral cover. Microhabitat heterogeneity was identified as a key factor governing the benthic harmful dinoflagellate assemblages and may account for much of the observed variability in dominant taxa. This finding has significant implications for the role of variability in the benthic harmful algal bloom (BHAB) outbreaks and the potential in identifying BHAB-related toxin transfer pathways and the key vectors in the food webs.
  14. Dada AC, Ahmad A, Usup G, Heng LY, Hamid R
    Environ Monit Assess, 2013 Sep;185(9):7427-43.
    PMID: 23417753 DOI: 10.1007/s10661-013-3110-x
    We report the first study on the occurrence of high-level aminoglycoside-resistant (HLAR) Enterococci in coastal bathing waters and beach sand in Malaysia. None of the encountered isolates were resistant to high levels of gentamicin (500 μg/mL). However, high-level resistance to kanamycin (2,000 μg/mL) was observed in 14.2 % of tested isolates, the highest proportions observed being among beach sand isolates. High-level resistance to kanamycin was higher among Enterococcus faecalis and Enterococcus faecium than Enterococcus spp. Chi-square analysis showed no significant association between responses to tested antibiotics and the species allocation or source of isolation of all tested Enterococci. The species classification of encountered Enterococci resistance to vancomycin was highest among Enterococcus spp. (5.89 %) followed by E. faecium (4.785) and least among E. faecalis. A total of 160 isolates were also tested for virulence characteristics. On the whole, caseinase production was profoundly highest (15.01 %) while the least prevalent virulence characteristic observed among tested beach Enterococci was haemolysis of rabbit blood (3.65 %). A strong association was observed between the source of isolation and responses for each of caseinase (C = 0.47, V = 0.53) and slime (C = 0.50, V = 0.58) assays. Analysis of obtained spearman's coefficient showed a strong correlation between caseinase and each of the slime production (p = 0.04), gelatinase (p = 0.0035) and haemolytic activity on horse blood (p = 0.004), respectively. Suggestively, these are the main virulent characteristics of the studied beach Enterococci. Our findings suggest that recreational beaches may contribute to the dissemination of Enterococci with HLAR and virulence characteristics.
  15. Shayesteh F, Ahmad A, Usup G
    Iran J Microbiol, 2020 Feb;12(1):52-61.
    PMID: 32322380
    Background and Objectives: Biofilm formed by Proteus mirabilis strains is one of the most important medical problems especially in the case of device-related urinary tract infections. This study was conducted to evaluate the bacteriocin produced by a marine isolate of Bacillus sp. Sh10, for it's in vitro inhibitory activity against pre-formed biofilm and in interference with the biofilm-forming of two biofilm-producing bacteria (P. mirabilis UCa4 and P. mirabilis UCe1).

    Materials and Methods: Sensitivity of two biofilm-producing bacteria (P. mirabilis UCa4 and P. mirabilis UCe1) to bacteriocin, was investigated in planktonic and biofilm states by cell viability and crystal violet assay, respectively. Scanning electron microscopy (SEM) was also performed to determine the effect of bacteriocin on the morphology of the cells associated with biofilm.

    Results: It was found that bacteriocin possessed bactericidal activity to biofilm-forming isolates in the planktonic state. However, bacteriocin interferes with the formation of biofilms and disrupts established biofilms. Bacteriocin reduced biofilm formation in the isolates of P. mirabilis UCa4 and P. mirabilis UCe1 with SMIC50 of 32 and 128 μg/mL, desirable SMIC50 of bacteriocin for biofilm disruption were 128 and 256 μg/mL, respectively. The SEM results indicated that bacteriocin affected the cell morphology of biofilm-associated cells.

    Conclusion: The present findings indicated that bacteriocin from Bacillus sp. Sh10 has bactericidal properties against biofilm-forming isolates of P. mirabilis UCa4 and P. mirabilis UCe1 and has the ability to inhibit the formation of biofilm and disrupt established biofilm.

  16. Jafarzade M, Yahya NA, Shayesteh F, Usup G, Ahmad A
    J Microbiol, 2013 Jun;51(3):373-9.
    PMID: 23812818 DOI: 10.1007/s12275-013-2440-2
    This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.
  17. Akbar MA, Yusof NYM, Sahrani FK, Usup G, Ahmad A, Baharum SN, et al.
    Biology (Basel), 2021 Aug 25;10(9).
    PMID: 34571703 DOI: 10.3390/biology10090826
    The toxin-producing dinoflagellate Alexandrium minutum is responsible for the outbreaks of harmful algae bloom (HABs). It is a widely distributed species and is responsible for producing paralytic shellfish poisoning toxins. However, the information associated with the environmental adaptation pathway and toxin biosynthesis in this species is still lacking. Therefore, this study focuses on the functional characterization of A. minutum unigenes obtained from transcriptome sequencing using the Illumina Hiseq 4000 sequencing platform. A total of 58,802 (47.05%) unigenes were successfully annotated using public databases such as NCBI-Nr, UniprotKB, EggNOG, KEGG, InterPRO and Gene Ontology (GO). This study has successfully identified key features that enable A. minutum to adapt to the marine environment, including several carbon metabolic pathways, assimilation of various sources of nitrogen and phosphorus. A. minutum was found to encode homologues for several proteins involved in saxitoxin biosynthesis, including the first three proteins in the pathway of saxitoxin biosynthesis, namely sxtA, sxtG and sxtB. The comprehensive transcriptome analysis presented in this study represents a valuable resource for understanding the dinoflagellates molecular metabolic model regarding nutrient acquisition and biosynthesis of saxitoxin.
  18. Lau WLS, Law IK, Liow GR, Hii KS, Usup G, Lim PT, et al.
    Harmful Algae, 2017 12;70:52-63.
    PMID: 29169568 DOI: 10.1016/j.hal.2017.10.006
    In 2015, a remarkably high density bloom of Alexandrium minutum occurred in Sungai Geting, a semi-enclosed lagoon situated in the northeast of Peninsular Malaysia, causing severe discoloration and contaminated the benthic clams (Polymesoda). Plankton and water samples were collected to investigate the mechanisms of bloom development of this toxic species. Analysis of bloom samples using flow cytometry indicated that the bloom was initiated by the process of active excystment, as planomycetes (>4C cells) were observed in the early stage of the bloom. Increase in planozygotes (2C cells) was evident during the middle stage of the bloom, coinciding with an abrupt decrease in salinity and increase of temperature. The bloom was sustained through the combination of binary division of vegetative cells, division of planozygotes, and cyst germination through continuous excystment. Nutrient depletion followed by precipitation subsequently caused the bloom to terminate. This study provides the first continuous record of in situ life-cycle stages of a natural bloom population of A. minutum through a complete bloom cycle. The event has provided a fundamental understanding of the pelagic life-cycle stages of this tropical dinoflagellate, and demonstrated a unique bloom development characteristic shared among toxic Alexandrium species in coastal embayments.
  19. Bloh AH, Usup G, Ahmad A
    Vet World, 2016 Feb;9(2):142-6.
    PMID: 27051199 DOI: 10.14202/vetworld.2016.142-146
    AIM: Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03.

    MATERIALS AND METHODS: The Dinoflagellate culture used in this study was supplied by Professor Gires Usup's Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree.

    RESULTS: Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06) were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity).

    CONCLUSION: On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates.

  20. Lim HC, Leaw CP, Su SN, Teng ST, Usup G, Mohammad-Noor N, et al.
    J Phycol, 2012 Oct;48(5):1232-47.
    PMID: 27011282 DOI: 10.1111/j.1529-8817.2012.01213.x
    Field sampling was undertaken to investigate the occurrence of Pseudo-nitzschia Peragallo species in eight locations along the coast of Malaysian Borneo. A total of 108 strains of Pseudo-nitzschia species were isolated, and their morphology examined with SEM and TEM. Additionally, molecular data from nuclear-encoded partial LSU rDNA, and ITS regions, were characterized. A total of five species were confidently identified based on a combination of distinct morphological characteristics and supporting molecular evidence: P. brasiliana Lundholm, Hasle & Fryxell, P. cuspidata (Hasle) Hasle, P. dolorosa Lundholm & Moestrup, P. micropora Priisholm, Moestrup & Lundholm, and P. pungens (Grunow) Hasle var. pungens. However, one morphotype from Sarawak, while somewhat similar to P. caciantha, showed significant morphological distinction from this and any other of the currently described species. Most notably this morphotype possessed a characteristic pore arrangement in the poroids, with the fine pores in each perforation sector arranged in circles. Pair-wise sequence comparison of the LSU rDNA between this unidentified morphotype and P. caciantha Lundholm, Moestrup & Hasle, revealed 2.7% genetic divergence. Phylogenetic analyses strongly supported the monophyly of the morphotype. Based upon these supporting data it is here described as a new species, Pseudo-nitzschia circumpora sp. nov. A key to the six species of Pseudo-nitzschia from Malaysian Borneo is presented. Molecular signatures for all species were established based on structural comparisons of ITS2 rRNA transcripts.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links