Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Chow MF, Yusop Z
    Water Sci Technol, 2014;69(2):244-52.
    PMID: 24473291 DOI: 10.2166/wst.2013.574
    The characteristics of urban stormwater pollution in the tropics are still poorly understood. This issue is crucial to the tropical environment because its rainfall and runoff generation processes are so different from temperate regions. In this regard, a stormwater monitoring program was carried out at three urban catchments (e.g. residential, commercial and industrial) in the southern part of Peninsular Malaysia. A total of 51 storm events were collected at these three catchments. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand (COD), oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen (NH3-N), soluble reactive phosphorus and total phosphorus. Principal component analysis (PCA) and hierarchical cluster analysis were used to interpret the stormwater quality data for pattern recognition and identification of possible sources. The most likely sources of stormwater pollutants at the residential catchment were from surface soil and leachate of fertilizer from domestic lawns and gardens, whereas the most likely sources for the commercial catchment were from discharges of food waste and washing detergent. In the industrial catchment, the major sources of pollutants were discharges from workshops and factories. The PCA factors further revealed that COD and NH3-N were the major pollutants influencing the runoff quality in all three catchments.
  2. Chow MF, Yusop Z, Toriman ME
    Water Sci Technol, 2013;67(8):1822-31.
    PMID: 23579839 DOI: 10.2166/wst.2013.048
    Urbanization and frequent storms play important roles in increasing faecal bacteria pollution, especially for tropical urban catchments. However, only little information on the faecal bacteria levels from different land use types and the factors that influence bacteria concentrations is available. Thus, the objectives of this study were to quantify the levels and transport mechanism of faecal coliforms (FCs) from residential and commercial catchments. Stormwaters were sampled and the runoff flow rates were measured from both catchments during four storm events in Skudai, Malaysia. The samples were then analysed for FC, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS) and ammoniacal-nitrogen (NH3-N) concentrations. Intra-storm and inter-storm characteristics of FC bacteria were investigated in order to identify the level and transport pattern of FC. The commercial catchment showed significantly higher event mean concentration (EMC) of FC than the residential catchment. For the residential catchment, the highest bacterial concentrations occurred during the early part of stormwater runoff with peak concentrations usually preceding the peak flow. First flush effect was more prevalent at the residential catchment.
  3. Chow MF, Yusop Z, Mohamed M
    Water Sci Technol, 2011;63(6):1211-6.
    PMID: 21436558 DOI: 10.2166/wst.2011.360
    This paper examines the storm runoff quality from a commercial area in south Johor, Malaysia. Six storm events with a total of 68 storm runoff samples were analyzed. Event Mean Concentration (EMC) for all constituents analysed showed large inter-event variation. Site mean concentrations (SMC) for total suspended solids (TSS), oil and grease (O&G), biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate-nitrogen (NO(3)-N), nitrite-nitrogen (NO(2)-N), ammonia-nitrogen (NH(3)-N), total phosphorus (Total P) and Soluble P are 261, 4.31, 74, 192, 1.5, 0.006, 1.9, 1.12 and 0.38 mg/L, respectively. The SMCs at the studied site are higher than those reported in many urban catchments. The mean baseflow concentrations were higher than the EMCs for COD, Soluble P, NH(3)-N, NO(3)-N, Total P and NO(2)-N. However, the reverse was observed for TSS and O&G. All pollutants showed the occurrence of first flush phenomenon with the highest strength was observed for TSS, COD and NH(3)-N.
  4. Yusop Z, Chan CH, Katimon A
    Water Sci Technol, 2007;56(8):41-8.
    PMID: 17978431
    Rainfall-runoff processes in a small oil palm catchment (8.2 ha) in Johor, Malaysia were examined. Storm hydrographs show rapid responses to rainfall with a short time to peak. The estimated initial hydrologic loss for the oil palm catchment is 5 mm. Despite the low initial loss, the catchment exhibits a high proportion of baseflow, approximately 54% of the total runoff. On an event basis, the stormflow response factor and runoff coefficient ranges from 0.003 to 0.21, and 0.02 to 0.44, respectively. Peakflow and stormflow volume were moderately correlated with rainfall. The hydrographs were satisfactorily modelled using the Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). The efficiency indexes of the calibration and validation exercises are 0.81 and 0.82, respectively. Based on these preliminary findings, it could be suggested that an oil palm plantation would be able to serve reasonably well in regulating basic hydrological functions.
  5. Nazahiyah R, Yusop Z, Abustan I
    Water Sci Technol, 2007;56(7):1-9.
    PMID: 17951862
    Sampling of urban runoff was carried out in a small catchment, which represents a residential area (3.34 ha) in Skudai, Johor. One hundred and seventeen runoff samples from ten storm events were analysed. Runoff quality showed large variations in concentrations during storms, especially for SS, BOD5 and COD. Concentrations of NO3-N, NO2-N, NH3-N, and P were also high. Lead (Pb) was also detected but the levels were low (<0.001 mg/L). In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event mean concentrations for all parameters were found to vary greatly between storms. The values (mg/L) were BOD5 (72), COD (325), SS (386), NO3-N (2.5), NO2-N (0.58), NH3-N (6.8), P (3.4), respectively. First flush phenomena were observed for BOD, COD, SS, NO3-N, NH3-N and P. The first 20-30% of the runoff volume evacuated between 20-59% BOD, 15-69% COD, 15-78% SS, 14-49% NO3-N, 14-19% NO2-N, 23-53% NH3-N and 23-43% P.
  6. Yusop Z, Tan LW, Ujang Z, Mohamed M, Nasir KA
    Water Sci Technol, 2005;52(9):125-32.
    PMID: 16445181
    Runoff quality draining from 17.14 km2 urban catchment in Johor Bahru, Malaysia, was analysed. The land-use consists of residential (30.3%), agricultural (27.3%), open space (27.9%), industrial (8.1%) and commercial (6.4%) areas. Three storm events were sampled in detail. These storms produced stormflow between 0.84 mm and 27.82 mm, and peakflow from 2.19 m3/s to 42.36 m3/s. Water quality showed marked variation during storms especially for TSS, BOD and COD with maximum concentrations of 778 mg/l, 135 mg/l and 358 mg/l, respectively. Concentrations of TOC, DOC, NH3-N, Fe and level of colour were also high. In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event Mean Concentrations (EMC) for various parameters varied considerably between storms. The largest storm produced higher EMC for TSS, NO3-N and SS whereas the smaller storms tend to register higher EMC for BOD, COD, NH3-N, TOC, Ca, K, Mg, Fe and Zn. Such variations could be explained in terms of pollutant availability and the effects of flushing and dilution. Based on a three-month average recurrence interval (ARI) of rainfall, the estimated event loadings (ton/ha) of TSS, BOD, COD, TOC, NH3-N and NO3-N were 0.055, 0.016, 0.012, 0.039, 0.010, 0.0007 and 0.0002, respectively. Heavy metals present in trace quantities. Storms with 3 months ARI could capture about 70% of the total annual loads of major pollutants.
  7. Ahmad UK, Ulang Z, Yusop Z, Fong TL
    Water Sci Technol, 2002;46(9):117-25.
    PMID: 12448460
    The complex nature of natural organic matter (NOM), and the impact of this matter on drinking water quality have necessitated the characterization studies of NOM. A fluorescence technique for the characterization of NOM in Malaysian river water is reported. Water samples from several river sampling sites were collected and concentrated using a low-pressure reverse osmosis (LPROM). Solid phase extraction (SPE) using C18 extraction cartridges were used to fractionate the water samples into humic and non-humic fractions. To differentiate and classify various types of humic substances, fluorescence was applied in emission, excitation and in synchronous-scan modes. A synchronous spectral profile was found to be able to differentiate humic and fulvic acids better than the emission or excitation spectra. Synchronous excitation spectra showed different spectral patterns for the water samples due to different origin. All water samples showed the presence of both fulvic and humic acids.
  8. Benalywa ZA, Ismail MM, Shamsudin MN, Yusop Z
    Trop Anim Health Prod, 2019 Feb;51(2):321-327.
    PMID: 30112733 DOI: 10.1007/s11250-018-1690-8
    Broiler meat is the largest and cheapest protein source in Malaysia. Using the policy analysis matrix (PAM), this study examines the comparative advantage of broiler production in Peninsular Malaysia. Three hundred and ten farms in Peninsular Malaysia were involved in a field survey. The results of the domestic resource cost (DRC) show that Malaysia has a comparative advantage in all scales of broiler production. Sensitivity analysis indicates that the changes in input prices have a significant effect on comparative advantage. Nonetheless, the industry should reduce its dependence on corn-based feed, which is expensive and has an unstable price, to increase competitiveness in further securing its comparative advantage.
  9. Adham MI, Shirazi SM, Othman F, Rahman S, Yusop Z, Ismail Z
    ScientificWorldJournal, 2014;2014:379763.
    PMID: 25152911 DOI: 10.1155/2014/379763
    Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling.
  10. Yakubu ML, Yusop Z, Yusof F
    ScientificWorldJournal, 2014;2014:361703.
    PMID: 25126597 DOI: 10.1155/2014/361703
    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance.
  11. Lani NHM, Syafiuddin A, Yusop Z, Adam UB, Amin MZBM
    Sci Total Environ, 2018 Sep 15;636:1171-1179.
    PMID: 29913579 DOI: 10.1016/j.scitotenv.2018.04.418
    A rainwater harvesting system (RWHS) was proposed for small and large commercial buildings in Malaysia as an alternative water supply for non-potable water consumption. The selected small and large commercial buildings are AEON Taman Universiti and AEON Bukit Indah, respectively. Daily rainfall data employed in this work were obtained from the nearest rainfall station at Senai International Airport, which has the longest and reliable rainfall record (29 years). Water consumption at both buildings were monitored daily and combined with the secondary data obtained from the AEON's offices. The mass balance model was adopted as the simulation approach. In addition, the economic benefits of RWHS in terms of percentage of reliability (R), net present value (NPV), return on investment (ROI), benefit-cost ratio (BCR), and payback period (PBP) were examined. Effects of rainwater tank sizes and water tariffs on the economic indicators were also evaluated. The results revealed that the percentages of reliability of the RWHS for the small and large commercial buildings were up to 93 and 100%, respectively, depending on the size of rainwater tank use. The economic benefits of the proposed RWHS were highly influenced by the tank size and water tariff. At different water tariffs between RM3.0/m3 and RM4.7/m3, the optimum PBPs for small system range from 6.5 to 10.0 years whereas for the large system from 3.0 to 4.5 years. Interestingly, the large commercial RWHS offers better NPV, ROI, BCR, and PBP compared to the small system, suggesting more economic benefits for the larger system.
  12. Sa'adi Z, Yusop Z, Alias NE, Shiru MS, Muhammad MKI, Ramli MWA
    Sci Total Environ, 2023 Sep 20;892:164471.
    PMID: 37257620 DOI: 10.1016/j.scitotenv.2023.164471
    This paper aims to select the most appropriate rain-based meteorological drought index for detecting drought characteristics and identifying tropical drought events in the Johor River Basin (JRB). Based on a multi-step approach, the study evaluated seven drought indices, including the Rainfall Anomaly Index (RAI), Standardized Precipitation Index (SPI), China-Z Index (CZI), Modified China-Z Index (MCZI), Percent of Normal (PN), Deciles Index (DI), and Z-Score Index (ZSI), based on the CHIRPS rainfall gridded-based datasets from 1981 to 2020. Results showed that CZI, MCZI, SPI, and ZSI outperformed the other indices based on their correlation and linearity (R2 = 0.96-0.99) along with their ranking based on the Compromise Programming Index (CPI). The historical drought evaluation revealed that MCZI, SPI, and ZSI performed similarly in detecting drought events, but SPI was more effective in detecting spatial coverage and the occurrence of 'very dry' and 'extremely dry' drought events. Based on SPI, the study found that the downstream area, north-easternmost area, and eastern boundary of the basin were more prone to higher frequency and longer duration droughts. Furthermore, the study found that prolonged droughts are characterized by episodic drought events, which occur with one to three months of 'relief period' before another drought event occurs. The study revealed that most drought events that coincide with El Niño, positive Indian Ocean Dipole (IOD), and negative Madden-Julian Oscillation (MJO) events, or a combination of these events, may worsen drought conditions. The application of CHIRPS datasets enables better spatiotemporal mapping and prediction of drought for JRB, and the output is pertinent for improving water management strategies and adaptation measures. Understanding spatiotemporal drought conditions is crucial to ensuring sustainable development and policies through better regulation of human activities. The framework of this research can be applied to other river basins in Malaysia and other parts of Southeast Asia.
  13. Sa'adi Z, Alias NE, Yusop Z, Iqbal Z, Houmsi MR, Houmsi LN, et al.
    Sci Total Environ, 2024 Feb 20;912:169187.
    PMID: 38097068 DOI: 10.1016/j.scitotenv.2023.169187
    The most recent set of General Circulation Models (GCMs) derived from the Coupled Model Intercomparison Project Phase 6 (CMIP6) was used in this work to analyse the spatiotemporal patterns of future rainfall distribution across the Johor River Basin (JRB) in Malaysia. A group of 23 GCMs were chosen for comparative assessment in simulating basin-scale rainfall based on daily rainfall from the historical period of the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS). The methodological novelty of this study lies in the application of relative importance metrics (RIM) to rank and select historical GCM simulations for reproducing rainfall at 109 CHIRPS grid points within the JRB. In order to choose the top GCMs, the rankings given by RIM were aggregated using the compromise programming index (CPI) and Jenks optimised classification (JOC). It was found that ACCESS-ESM1-5 and CMCC-ESM2 were ranked the highest in most of the grid. The final GCM was then bias-corrected using the linear scaling method before being ensemble based on the Bayesian model averaging (BMA) technique. The spatiotemporal assessment of the ensemble model for the different months over the near-future period 2021-2060 and far-future period 2061-2100 was compared with those under Shared Socioeconomic Pathways (SSPs), namely, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Heterogeneous changes in rainfall were projected across the JRB, with both increasing and decreasing trends. In the near-future and far-future scenarios, higher rainfall was projected for December, indicating an elevated risk of flooding during the end of the North East monsoon (NEM). Conversely, August showed a decreasing trend in rainfall, implying an increasing risk of severe drought. The findings of this study provide valuable insights for effective water resource management and climate change adaptation in the region.
  14. Vijaya Bhaskar Reddy A, Yusop Z, Jaafar J, Bin Aris A, Abdul Majid Z, Umar K, et al.
    J Sep Sci, 2016 Jun;39(12):2276-83.
    PMID: 27095506 DOI: 10.1002/jssc.201600155
    A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid-phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected-ion monitoring mode. Good linear relationships were obtained in the range of 0.1-50 μg/L for chlorpyrifos, and 0.05-50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54-86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level.
  15. Reddy AVB, Yusop Z, Jaafar J, Bin Aris A, Abdul Majid Z
    J Sep Sci, 2017 Aug;40(15):3086-3093.
    PMID: 28581679 DOI: 10.1002/jssc.201700252
    An extremely sensitive and simple gas chromatography with mass spectrometry method was developed and completely validated for the analysis of five process-related impurities, viz., 4-hydroxy-l-phenylglycine, 4-hydroxyphenylacetonitrile, 4-hydroxyphenylacetic acid, methyl-4-hydroxyphenylacetate, and 2-[4-{(2RS)-2-hydroxy-3-[(1-methylethyl)amino]propoxy}phenyl]acetonitrile, in atenolol. The separation of impurities was accomplished on a BPX-5 column with dimensions of 50 m × 0.25 mm i.d. and 0.25 μm film thickness. The method validation was performed following International Conference on Harmonisation guidelines in which the method was capable to quantitate 4-hydroxy-l-phenylglycine, 4-hydroxyphenylacetonitrile, and 4-hydroxyphenylacetic acid at 0.3 ppm, and methyl-4-hydroxyphenylacetate and 2-[4-{(2RS)-2-hydroxy-3-[(1-methylethyl)amino]propoxy}phenyl]acetonitrile at 0.35 ppm with respect to 10 mg/mL of atenolol. The method was linear over the concentration range of 0.3-10 ppm for 4-hydroxy-l-phenylglycine, 4-hydroxyphenylacetonitrile, and 4-hydroxyphenylacetic acid, and 0.35-10 ppm for methyl-4-hydroxyphenylacetate and 2-[4-{(2RS)-2-hydroxy-3-[(1-methylethyl)amino]propoxy}phenyl]acetonitrile. The correlation coefficient in each case was found ≥0.998. The repeatability and recovery values were acceptable, and found between 89.38% and 105.60% for all five impurities under optimized operating conditions. The method developed here is simple, selective, and sensitive with apparently better resolution than the reported methods. Hence, the method is a straightforward and good quality control tool for the quantitation of selected impurities at trace concentrations in atenolol.
  16. A VBR, Yusop Z, Jaafar J, Aris AB, Majid ZA, Umar K, et al.
    J Pharm Biomed Anal, 2016 Sep 05;128:141-148.
    PMID: 27262107 DOI: 10.1016/j.jpba.2016.05.026
    In this study a sensitive and selective gradient reverse phase UPLC-MS/MS method was developed for the simultaneous determination of six process related impurities viz., Imp-I, Imp-II, Imp-III, Imp-IV, Imp-V and Imp-VI in darunavir. The chromatographic separation was performed on Acquity UPLC BEH C18 (50 mm×2.1mm, 1.7μm) column using gradient elution of acetonitrile-methanol (80:20, v/v) and 5.0mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4mL/min. Both negative and positive electrospray ionization (ESI) modes were operated simultaneously using multiple reaction monitoring (MRM) for the quantification of all six impurities in darunavir. The developed method was fully validated following ICH guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, robustness and sample solution stability. The method was able to quantitate Imp-I, Imp-IV, Imp-V at 0.3ppm and Imp-II, Imp-III, and Imp-VI at 0.2ppm with respect to 5.0mg/mL of darunavir. The calibration curves showed good linearity over the concentration range of LOQ to 250% for all six impurities. The correlation coefficient obtained was >0.9989 in all the cases. The accuracy of the method lies between 89.90% and 104.60% for all six impurities. Finally, the method has been successfully applied for three formulation batches of darunavir to determine the above mentioned impurities, however no impurity was found beyond the LOQ. This method is a good quality control tool for the trace level quantification of six process related impurities in darunavir during its synthesis.
  17. Thanalechumi P, Mohd Yusoff AR, Yusop Z
    J Pestic Sci, 2017 May 20;42(2):39-44.
    PMID: 30363139 DOI: 10.1584/jpestics.D16-086
    The voltammetric determination of metsulfuron-methyl, a type of pesticide, was investigated on a hanging mercury drop electrode using a differential pulse cathodic stripping voltammetry technique. The experimental parameters, such as the pH of the Britton-Robinson buffer, accumulation time, accumulation potential and initial potential were optimized for the metsulfuron-methyl determination. A well-defined reduction peak was observed at pH 2.0 to 4.0 in the potential range of -0.75 to -1.0 V. The pH of 2.0 was chosen as the optimum pH due to a good stripping signal of the reduction peak. There were no significant interfering ion effects on the electroanalysis of metsulfuron-methyl. The optimized parameters were then used to determine metsulfuron-methyl in the commercial pesticide Ally. The proposed method was highly sensitive due to the lower limit of determination (0.04 mg/L), being relatively selective, and consisting of good precision. The recovery values achieved were about 93% in water samples for this analysis.
  18. Thanalechumi P, Mohd Yusoff AR, Yusop Z
    J Environ Sci Health B, 2019;54(4):294-302.
    PMID: 30729855 DOI: 10.1080/03601234.2018.1561057
    A newly developed electrochemical sensor for chlorothalonil based on nylon 6,6 film deposited onto screen printed electrode (SPE) with electrochemical modulation of pH at the electrode/solution interface was studied for the first time. Differential pulse cathodic stripping voltammetry (DPCSV) was used to carry out the electrochemical and analytical studies. Experimental parameters such as accumulation potential, initial potential, accumulation time and pH of Britton-Robinson buffer have been optimized. Chlorothalonil gave optimum analytical signal in a medium of 0.04 M Britton-Robinson buffer at pH 6.0. A well-defined reduction peak was observed, at Ep= -0.851 and -0.938 V vs. Ag/AgCl (3.0 M KCl) for both bare SPE and modified SPE, respectively. The peak currents of modified SPE were significantly increased as compared to bare SPE. At the modified SPE, a linear relationship between the peak current and chlorothalonil concentration was obtained in the range from 0.1 to 2.8 × 10-6 M with a detection limit of 1.53 × 10-8 M (S/N= 3). The practical applicability of the newly developed method has been demonstrated on analyses of real water samples. The newly developed sensor shows good reproducibility with RSD of 3.92%. The nylon 6,6 modified SPE showed itself as promising sensor with good selectivity for chlorothalonil determination.
  19. Muhamad MS, Salim MR, Lau WJ, Hadibarata T, Yusop Z
    Environ Technol, 2016 Aug;37(15):1959-69.
    PMID: 26729509 DOI: 10.1080/09593330.2015.1137359
    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.
  20. Ali S, Yusop Z, Kaliappan SR, Chin L
    Environ Sci Pollut Res Int, 2021 Jan;28(4):4531-4548.
    PMID: 32944853 DOI: 10.1007/s11356-020-10845-6
    Being closely correlated with income and economic growth, trade openness impacts the environmental quality through different means. The study analyzes the robustness of the environmental Kuznets curve (EKC) hypothesis in OIC countries by examining the extent to which trade openness influence environmental quality through different environmental indicators for the period 1991 to 2018. A new methodology dynamic common correlated effects (DCCE) is applied to resolve the issue of cross-sectional dependence (CSD). We have used greenhouse gas (GHG) emissions, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) along with ecological footprint as indicators of environmental quality. Results of DCCE estimation identify a negative association of trade openness with CO2, N2O, and CH4, while the positive relationship with the ecological footprint in overall OIC countries and higher income OIC countries. On the other hand, trade openness has a positive association with all environmental indicators in lower income OIC countries. Our findings confirm that inverted-U-shaped EKC exists in all groups of OIC countries when CO2, CH4, and ecological footprint are used as environmental indicators. However, a U-shaped EKC exists in overall OIC countries and lower income OIC countries when N2O is used. Eventually, it is recommended that if OIC countries continue trade openness policies and energy sector reforms and maintain sustainable use of biocapacity; then, they will be able to combat environmental issues with the increase in income.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links