Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Abu-Bakar A, Hu H, Lang MA
    Basic Clin Pharmacol Toxicol, 2018 Sep;123 Suppl 5:72-80.
    PMID: 29788535 DOI: 10.1111/bcpt.13046
    The murine cytochrome P450 2a5 (Cyp2a5) gene is regulated by complex interactions of various stress-activated transcription factors (TFs). Elevated Cyp2a5 transcription under chemical-induced stress conditions is achieved by interplay between the various TFs - including as aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 wild-type (Nrf2) - at the 'stress-responding' cluster of response elements on the Cyp2a5 promoter, as well as through mRNA stabilization mediated by interaction of the stress-activated heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) with the 3'-UTR of the CYP2A5 mRNA. We designed a unique toxicity pathway-based reporter assay to include regulatory regions from both the 5' and the 3' untranslated regions of Cyp2a5 in a luciferase reporter plasmid to reflect in vivo responses to chemical insult. Human breast cancer MCF-7 cells were stably transfected with pGL4.38-Cyp2a5_Wt3k (wild-type) or mutant - pGL4.38-Cyp2a5_StREMut and pGL4.38-Cyp2a5_XREMut - reporter gene to monitor chemical-induced cellular response mediated by AhR and Nrf2 signalling. The recombinant cells were treated with representative of AhR agonist, polycyclic aromatic hydrocarbons, brominated flame retardant, fluorosurfactant, aromatic organic compound and metal, to determine the sensitivity of the Cyp2a5 promoter-based gene reporter assays to chemical insults by measuring the LC50 and EC50 of the respective chemicals. The three assays are sensitive to sublethal cellular responses of chemicals, which is an ideal feature for toxicity pathway-based bioassay for toxicity prediction. The wild-type reporter responded well to chemicals that activate crosstalk between the AhR and Nrf2, whilst the mutant reporters effectively gauge cellular response driven by either Nrf2/StRE or AhR/XRE signalling. Thus, the three gene reporter assays could be used tandemly to determine the predominant toxicity pathway of a given compound.
    Matched MeSH terms: 3' Untranslated Regions/genetics
  2. Ahmad Z, Poh CL
    Int J Med Sci, 2019;16(3):355-365.
    PMID: 30911269 DOI: 10.7150/ijms.29938
    Dengue virus belongs to the Flaviviridae family which also includes viruses such as the Zika, West Nile and yellow fever virus. Dengue virus generally causes mild disease, however, more severe forms of the dengue virus infection, dengue haemorrhagic fever (DHF) and dengue haemorrhagic fever with shock syndrome (DSS) can also occur, resulting in multiple organ failure and even death, especially in children. The only dengue vaccine available in the market, CYD-TDV offers limited coverage for vaccinees from 9-45 years of age and is only recommended for individuals with prior dengue exposure. A number of mutations that were shown to attenuate virulence of dengue virus in vitro and/or in vivo have been identified in the literature. The mutations which fall within the conserved regions of all four dengue serotypes are discussed. This review hopes to provide information leading to the construction of a live attenuated dengue vaccine that is suitable for all ages, irrespective of the infecting dengue serotype and prior dengue exposure.
    Matched MeSH terms: 3' Untranslated Regions
  3. Amini F, Ismail E
    J Hum Genet, 2013 Apr;58(4):189-94.
    PMID: 23389243 DOI: 10.1038/jhg.2012.155
    The combination of two silent mutations, c.1311C>T in exon 11 and IVS11 T93C (glucose-6-phosphate dehydrogenase (G6PD) 1311T/93C), with unknown mechanism, have been reported in G6PD-deficient individuals in Asian populations including Malaysian aboriginal group, Negrito. Here, we report the screening of G6PD gene in 103 Negrito volunteers using denaturing high-performance liquid chromatography (dHPLC) and direct sequencing. A total of 48 individuals (46.6%) were G6PD deficient, 83.3% of these carried G6PD 1311T/93C with enzyme activity ranging from 1.8 to 4.8 U gHb(-1). Three novel single-nucleotide polymorphisms (SNPs), rs112950723, rs111485003 and rs1050757, were found in the G6PD 3'-untranslated region (UTR). Strong association was observed between haplotype 1311T/93C and rs1050757G, which is located inside the 35 bp AG-rich region. In silico analysis revealed that the transition of A to G at position rs1050757 makes significant changes in the G6PD mRNA secondary structure. Moreover, putative micro (mi)RNA target sites were identified in 3'-UTR of G6PD gene, two of these in the region encompassing rs1050757. It could be speculated that rs1050757 have a potential functional effect on the downregulation of mRNA and consequently G6PD deficiency either by affecting mRNA stability and translation or mirRNA regulation process. This is the first report of biochemical association of an SNP in 3'-UTR of G6PD gene and the possible role of mRNA secondary structure.
    Matched MeSH terms: 3' Untranslated Regions*
  4. Ankasha SJ, Shafiee MN, Abdul Wahab N, Raja Ali RA, Mokhtar NM
    PMID: 34071861 DOI: 10.3390/ijerph18115741
    High-grade serous ovarian cancer (HGSC) is the most common ovarian cancer with highly metastatic properties. A small non-coding RNA, microRNA (miRNA) was discovered to be a major regulator in many types of cancers through binding at the 3'-untranslated region (3'UTR), leading to degradation of the mRNA. In this study, we sought to investigate the underlying mechanisms involved in the dysregulation of miR-200c-3p in HGSC progression and metastasis. We identified the upregulation of miR-200c-3p expression in different stages of HGSC clinical samples and the downregulation of the tumor suppressor gene, Deleted in Liver Cancer 1 (DLC1), expression. Over expression of miR-200c-3p in HGSC cell lines downregulated DLC1 but upregulated the epithelial marker, E-cadherin (CDH1). Based on in silico analysis, two putative binding sites were found within the 3'UTR of DLC1, and we confirmed the direct binding of miR-200c-3p to the target binding motif at position 1488-1495 bp of 3'UTR of DLC1 by luciferase reporter assay in a SKOV3 cell line co-transfected with vectors and miR-200c-3p mimic. These data showed that miR-200c-3p regulated the progression of HGSC by regulating DLC1 expression post-transcription and can be considered as a promising target for therapeutic purposes.
    Matched MeSH terms: 3' Untranslated Regions
  5. Azlan A, Obeidat SM, Yunus MA, Azzam G
    Sci Rep, 2019 08 21;9(1):12147.
    PMID: 31434910 DOI: 10.1038/s41598-019-47506-9
    Long noncoding RNAs (lncRNAs) play diverse roles in biological processes. Aedes aegypti (Ae. aegypti), a blood-sucking mosquito, is the principal vector responsible for replication and transmission of arboviruses including dengue, Zika, and Chikungunya virus. Systematic identification and developmental characterisation of Ae. aegypti lncRNAs are still limited. We performed genome-wide identification of lncRNAs, followed by developmental profiling of lncRNA in Ae. aegypti. We identified a total of 4,689 novel lncRNA transcripts, of which 2,064, 2,076, and 549 were intergenic, intronic, and antisense respectively. Ae. aegypti lncRNAs share many characteristics with other species including low expression, low GC content, short in length, and low conservation. Besides, the expression of Ae. aegypti lncRNAs tend to be correlated with neighbouring and antisense protein-coding genes. A subset of lncRNAs shows evidence of maternal inheritance; hence, suggesting potential role of lncRNAs in early-stage embryos. Additionally, lncRNAs show higher tendency to be expressed in developmental and temporal specific manner. The results from this study provide foundation for future investigation on the function of Ae. aegypti lncRNAs.
    Matched MeSH terms: 3' Untranslated Regions
  6. Cha TS, Habib Shah F
    Plant Sci, 2001 Apr;160(5):913-923.
    PMID: 11297788
    The mRNA differential display method was used to identify and isolate cDNAs corresponding to transcripts that accumulate during the period of lipid synthesis, 12-20 weeks after anthesis (WAA) in the kernel of Elaeis guineensis, var. Tenera. We successfully isolated two cDNA clones, KT7 (312 bp) and KT8 (266 bp). Interestingly, both clones show 79% nucleotide sequence identity to each other. This suggests that both clones encode the isoforms of the same protein. We screened the kernel (15 WAA) cDNA library and isolated the clone pKT7 (587 bp) using KT7 as probe, and isolated another isoform with KT8 probe, which designated as pKT9 (900 bp). Clone pKT9 has 93% nucleotide identity to KT8 and only 46% to pKT7 in their 3'-untranslated region. All three clones displayed significant amino acid sequence identity to seed storage protein glutelin from monocotyledon and globulin from dicotyledon plants. The coding sequence of KT8 (106 bp) shows 76 and 97% identity to pKT9 and pKT7, respectively. Therefore, we suggest that clones KT8 and pKT7 are members of the same subfamily (A), while pKT9 belongs to another subfamily (B) of glutelin multigene families. Southern analysis shows that there are at least four members for the subfamily B. Northern analysis shows that these three members of the glutelin family are co-ordinately expressed and developmentally regulated during the development of the kernel. The transcripts begin to accumulate at 12 WAA, increase in 15 WAA and show a significant reduction at 17 WAA.
    Matched MeSH terms: 3' Untranslated Regions
  7. Chow TJ, Tee SF, Loh SY, Yong HS, Abu Bakar AK, Song SL, et al.
    Asian J Psychiatr, 2018 Aug;36:17-18.
    PMID: 29864676 DOI: 10.1016/j.ajp.2018.05.025
    Matched MeSH terms: 3' Untranslated Regions
  8. Chua KH, Puah SM, Chew CH, Tan SY, Lian LH
    Ann Hum Biol, 2010 Apr;37(2):274-80.
    PMID: 19951233 DOI: 10.3109/03014460903325185
    In this study, we investigated the polymorphisms of the exon 1 (+49A/G), promoter sites (-1722T/C, -1661A/G, -318C/T), and 3'-untranslated region (3'-UTR) (+6230 A/G) of the CTLA-4 gene in systemic lupus erythematosus (SLE) affected patients. Polymerase chain reaction-restriction fragment length polymorphism was used to determine genotypes of these five markers in 130 SLE patients and 130 healthy controls. Of the five tested polymorphisms, there was no statistical significant difference between the genotypic and allelic frequencies of patients with SLE and controls. Hence, we propose that the CTLA-4 gene does not play a major role in the genetic susceptibility to the development of SLE in the Malaysian population.
    Matched MeSH terms: 3' Untranslated Regions
  9. Do TD, Thi Mai N, Duy Khoa TN, Abol-Munafi AB, Liew HJ, Kim CB, et al.
    Evol Bioinform Online, 2019;15:1176934319853580.
    PMID: 31236006 DOI: 10.1177/1176934319853580
    Temperature is an abiotic factor that affects various biological and physiological processes in fish. Temperature stress is known to increase the production of reactive oxygen species (ROS) that subsequently cause oxidative stress. Fish is known to evolve a system of antioxidant enzymes to reduce ROS toxicology. Glutathione peroxidase (GPx) family consists of key enzymes that protect fish from oxidative stress. In this study, full-length GPx1 cDNA (GenBank accession no. KY984468) of Tor tambroides was cloned and characterized by rapid amplification of cDNA ends (RACE). The 899-base-pair (bp) GPx1 cDNA includes a 576-bp open reading frame encoding for 191 amino acids, plus 28 bp of 5'-untranslated region (UTR) and 295 bp of 3'-UTR. Homology analysis revealed that GPx1 of T tambroides (Tor-GPx1) shared high similarity with GPx1 sequences of other fish species. The phylogenetic construction based on the amino acid sequence showed that Tor-GPx1 formed a clade with GPx1 sequences of various fish species. Real-time polymerase chain reaction (PCR) was performed to assess the levels of GPx1 gene expression in the liver and muscle of T tambroides under thermal stress. The results indicated that GPx1 gene expression was down-regulated under decreased temperature. However, there was no significant difference between GPx1 gene expression in fish exposed to high temperature and control. Our study provides the first data regarding GPx gene expression in T tambroides under thermal stress.
    Matched MeSH terms: 3' Untranslated Regions
  10. Elyasi Gorji Z, Amiri-Yekta A, Gourabi H, Hassani S, Fatemi N, Zerehdaran S, et al.
    Iran J Biotechnol, 2015 Jun;13(2):10-17.
    PMID: 28959285 DOI: 10.15171/ijb.1004
    BACKGROUND: Follicle stimulating hormone (FSH) plays an essential role in reproductive physiology and follicular development.

    OBJECTIVE: A new variant of the equine fsh (efsh) gene was cloned, sequenced, and expressed in Pichia pastoris (P. pastoris) GS115 yeast expression system.

    MATERIALS AND METHODS: The full-length cDNAs of the efshα and efshβ chains were amplified by reverse transcription polymerase chain reaction (RT-PCR) using the total RNA isolated from an Iranian Turkmen-thoroughbred horse's anterior pituitary gland. The amplified efsh chains were cloned into the pPIC9 vector and transferred into P. pastoris. The secretion of recombined eFSH using P. pastoris expression system was confirmed by Western blotting and immunoprecipitation (IP) methods.

    RESULTS: The DNA sequence of the efshβ chain accession number JX861871, predicted two putative differential nucleotide arrays, both of which are located in the 3'UTR. Western blotting showed a molecular mass of 13 and 18 kDa for eFSHα and eFSHβ subunits, respectively. The expression of desired protein was confirmed by protein G immunoprecipitation kit.

    CONCLUSIONS: eFSH successfully expressed in P. pastoris. These findings lay a foundation to improve ovulation and embryo recovery rates as well as the efficiency of total embryo-transfer process in mares.

    Matched MeSH terms: 3' Untranslated Regions
  11. Gupta G, Chellappan DK, de Jesus Andreoli Pinto T, Hansbro PM, Bebawy M, Dua K
    Panminerva Med, 2018 Mar;60(1):17-24.
    PMID: 29164842 DOI: 10.23736/S0031-0808.17.03386-9
    MicroRNAs (miRNAs) are non-coding RNAs of around 20-25 nucleotides in length with highly conserved characteristics. They moderate post-transcriptional silencing by precisely combining with 3' untranslated regions (UTRs) of target mRNAs at a complementary site. miR‑503, an associate of the "canonical" miRNA-16 family, is expressed in numerous types of tumors such as breast cancer, prostate cancer, lung cancer, colorectal cancer, hepatocellular carcinoma, glioblastoma and several others. There is convincing evidence to show that miR‑503 functions as a tumor suppressor gene through its effects on target genes that regulate cell proliferation, migration, and invasion in tumor cells. In this current assessment, we discuss the biology and tumor suppressor role of miR‑503 in different cancers and elaborate on its mechanism of action.
    Matched MeSH terms: 3' Untranslated Regions
  12. Lian LH, Kee BP, Ng HL, Chua KH
    Genet. Mol. Res., 2011;10(4):2841-50.
    PMID: 22095608 DOI: 10.4238/2011.November.17.2
    Regulated on activation, normal T-cell expressed and secreted (RANTES) and stromal cell-derived factor 1 (SDF-1) are members of the CC- and CXC-chemokine families, respectively. Both genes have been postulated to be involved in the pathogenesis of systemic lupus erythematosus (SLE). We analyzed position 28 of the RANTES gene promoter region, as well as the SNP observed in the 3' UTR of the SDF-1 gene at position 801, in 130 patients presenting SLE at the Malaya University Medical Centre. Screening of 130 healthy volunteer controls using RFLP was also performed. RANTES-28 polymorphism analysis showed no significant (P = 0.3520) relationship, even though homozygous C/C was more frequent in SLE patients (OR = 1.4183) and heterozygous C/G was more frequent in healthy controls (OR = 0.7051). There were no significant (P = 0.2650) associations between A/A (OR = 0.783), G/G (OR = 1.5914) and G/A (OR = 0.8289) genotypes in the SDF-1 gene polymorphism with SLE. We conclude that there is no significant association of RANTES-28 and SDF-1 gene polymorphisms and occurrence of SLE in Malaysia.
    Matched MeSH terms: 3' Untranslated Regions/genetics
  13. Liu J, Lončar I, Collée JM, Bolla MK, Dennis J, Michailidou K, et al.
    Sci Rep, 2016 Nov 15;6:36874.
    PMID: 27845421 DOI: 10.1038/srep36874
    NBS1, also known as NBN, plays an important role in maintaining genomic stability. Interestingly, rs2735383 G > C, located in a microRNA binding site in the 3'-untranslated region (UTR) of NBS1, was shown to be associated with increased susceptibility to lung and colorectal cancer. However, the relation between rs2735383 and susceptibility to breast cancer is not yet clear. Therefore, we genotyped rs2735383 in 1,170 familial non-BRCA1/2 breast cancer cases and 1,077 controls using PCR-based restriction fragment length polymorphism (RFLP-PCR) analysis, but found no association between rs2735383CC and breast cancer risk (OR = 1.214, 95% CI = 0.936-1.574, P = 0.144). Because we could not exclude a small effect size due to a limited sample size, we further analyzed imputed rs2735383 genotypes (r2 > 0.999) of 47,640 breast cancer cases and 46,656 controls from the Breast Cancer Association Consortium (BCAC). However, rs2735383CC was not associated with overall breast cancer risk in European (OR = 1.014, 95% CI = 0.969-1.060, P = 0.556) nor in Asian women (OR = 0.998, 95% CI = 0.905-1.100, P = 0.961). Subgroup analyses by age, age at menarche, age at menopause, menopausal status, number of pregnancies, breast feeding, family history and receptor status also did not reveal a significant association. This study therefore does not support the involvement of the genotype at NBS1 rs2735383 in breast cancer susceptibility.
    Matched MeSH terms: 3' Untranslated Regions
  14. Lung RW, Hau PM, Yu KH, Yip KY, Tong JH, Chak WP, et al.
    J Pathol, 2018 Apr;244(4):394-407.
    PMID: 29230817 DOI: 10.1002/path.5018
    Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
    Matched MeSH terms: 3' Untranslated Regions
  15. Mohamed ZI, Tee SF, Tang PY
    Psychiatr Genet, 2018 12;28(6):110-119.
    PMID: 30252773 DOI: 10.1097/YPG.0000000000000210
    INTRODUCTION: In recent years, various studies have accumulated evidence of the involvement of single nucleotide polymorphisms (SNPs) in introns and exons in schizophrenia. The association of functional SNPs in the 3'-untranslated regions with schizophrenia has been explored in a number of studies, but the results are inconclusive because of limited meta-analyses. To systematically analyze the association between SNPs in 3'-untranslated regions and schizophrenia, we conducted a meta-analysis by combining all available studies on schizophrenia candidate genes.

    MATERIALS AND METHODS: We searched candidate genes from the schizophrenia database and performed a comprehensive meta-analysis using all the available data up to August 2017. The association between susceptible SNPs and schizophrenia was assessed by the pooled odds ratio with 95% confidence interval using fixed-effect and random-effect models.

    RESULTS: A total of 21 studies including 8291 cases and 9638 controls were used for meta-analysis. Three investigated SNPs were rs165599, rs3737597, and rs1047631 of COMT, DISC1, and DTNBP1, respectively. Our results suggested that rs3737597 showed a significant association with schizophrenia in Europeans (odds ratio: 1.584, P: 0.002, 95% confidence interval: 1.176-2.134) under a random-effect framework.

    CONCLUSION: This meta-analysis indicated that rs3737597 of DISC1 was significantly associated with schizophrenia in Europeans, and it can be suggested as an ethnic-specific risk genetic factor.

    Matched MeSH terms: 3' Untranslated Regions/genetics
  16. Mohamed ZI, Tee SF, Chow TJ, Loh SY, Yong HS, Bakar AKA, et al.
    Asian J Psychiatr, 2019 Feb;40:76-81.
    PMID: 30771755 DOI: 10.1016/j.ajp.2019.02.001
    Transcription factor 4 (TCF4) gene plays an important role in nervous system development and it always associated with the risk of schizophrenia. Since miRNAs regulate targetgenes by binding to 3'UTRs of target mRNAs, the functional variants located in 3'UTR of TCF4 are highly suggested to affect the gene expressions in schizophrenia. To test the hypothesis regarding the effects of the variants located in 3'UTR of TCF4, we conducted an in silico analysis to identify the functional variants and their predicted functions. In this study, we sequenced the 3'UTR of TCF4 in 13 multiplex schizophrenia families and 14 control families. We found two functional variants carried by three unrelated patients. We determined that the C allele of rs1272363 and the TC insert of rs373174214 might suppress post- transcriptional expression. Secondly, we cloned the region that flanked these two variants into a dual luciferase reporter system and compared the luciferase activities between the pmirGLO-TCF4 (control), pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263. Both pmirGLO-TCF4-rs373174214 and pmirGLO-TCF4-rs1273263 caused lower reporter gene activities, as compared to the control. However, only the C allele of rs1272363 reduced the luciferase activity significantly (p = 0.0231). Our results suggested that rs1273263 is a potential regulator of TCF4 expression, and might be associated with schizophrenia.
    Matched MeSH terms: 3' Untranslated Regions/genetics*
  17. Mohd Khair SZN, Ismail AS, Embong Z, Mohamed Yusoff AA
    J Ophthalmic Vis Res, 2019 5 23;14(2):171-178.
    PMID: 31114654 DOI: 10.4103/jovr.jovr_210_17
    Purpose: To determine the mutational analyses of familial exudative vitreoretinopathy (FEVR)-causing genes in Malay patients with retinopathy of prematurity (ROP) to obtain preliminary data for gene alterations in the Malay community.

    Methods: A comparative cross-sectional study involving 86 Malay premature babies (ROP = 41 and non-ROP = 45) was performed from September 2012 to December 2014. Mutation analyses in (FEVR)-causing genes (NDP, FZD4, LRP5, and TSPAN12) were performed using DNA from premature babies using polymerase chain reaction (PCR) and direct sequencing. Sequencing results were confirmed with PCR-Restriction Fragment Length Polymorphism (RFLP).

    Results: We found variants of FZD4, LRP5, and TSPAN12 in this study. One patient from each group showed a non-synonymous alteration in FZD4, c.502C>T (p.P168S). A synonymous variant of LRP5 [c.3357G>A (p.V1119V)] was found in 30 ROP and 28 non-ROP patients. Two variants of TSPAN12, c.765G>T (p.P255P) and c.*39C>T (3'UTR), were also recorded (29 and 21 in ROP, 33 and 26 in non-ROP, respectively). Gestational age and birth weight were found to be significantly associated with ROP (P value < 0.001 and 0.001, respectively).

    Conclusion: Analysis of data obtained from the ROP Malay population will enhance our understanding of these FEVR-causing gene variants. The c.3357G>A (p.V1119V) variant of LRP5, and c.765G>T (p.P255P) and c.*39C>T variants of TSPAN12 could be common polymorphisms in the Malay ethnic group; however, this requires further elucidation. Future studies using larger groups and higher numbers of advanced cases are necessary to evaluate the relationship between FEVR-causing gene variants and the risk of ROP susceptibility in Malaysian infants.

    Matched MeSH terms: 3' Untranslated Regions
  18. Murulitharan K, Yusoff K, Omar AR, Molouki A
    Virus Genes, 2013 Jun;46(3):431-40.
    PMID: 23306943 DOI: 10.1007/s11262-012-0874-y
    Newcastle disease virus (NDV) strain AF2240 is a viscerotropic velogenic strain that is used as a vaccine challenge virus in Malaysia. The identification of the full length genome will be a crucial platform for further studies of this isolate. In this study, we fully sequenced the genome of a derivative of this strain named AF2240-I. The 15,192 nt long genome contains a 55-nt leader sequence at the 3' whereas the trailer region consists of 114 nt at the 5'. The intergenic sequences between the NP-P, P-M, M-F, F-HN, and HN-L genes comprise 1, 1, 1, 31, and 47 nt, respectively. The acknowledged cleavage site of fusion protein showed amino acid sequence of 112-R-R-Q-K-R-F-117, which corresponds to those of virulent NDV strains. Phylogenetic analysis of the whole virus genome shows that the strain AF2240-I belongs to genotype VIII and is more closely related to velogenic strains QH1, QH4, Fontana, Largo, and Italienas compared to other strains of NDV. Differences are noticed in the hemagglutinin-neuraminidase (HN) and matrix (M) gene between AF2240 and its derivative AF2240-I. This is the first report of a complete genome sequence of an NDV strain isolated in Malaysia.
    Matched MeSH terms: 3' Untranslated Regions
  19. Ong CC, Lam SK, AbuBakar S
    Malays J Pathol, 1998 Jun;20(1):11-7.
    PMID: 10879258
    In vitro generated cloned full length dengue 2 virus untranslated regions (UTRs) were used in RNA gel mobility shift assays to examine cellular factors binding to the virus genomes. Cellular factors in lysates of Vero (monkey) and C6/36 (mosquito) cells bound specifically and non-specifically to the dengue 2 virus 3' UTR. Non-specific interaction with the 5' UTR, resulting in formation of at least 4 band shift complexes was noted with lysate of the C6/36 cells only. Pre-treating the cell lysates with proteinase K affected binding of cellular factors to the dengue 2 virus UTRs, suggesting that the cellular factors were proteins. These findings suggest that cellular proteins could interact with specific sites on the dengue virus genomes.
    Matched MeSH terms: 3' Untranslated Regions/genetics
  20. Othman N, Nagoor NH
    Int J Oncol, 2017 Dec;51(6):1757-1764.
    PMID: 29075783 DOI: 10.3892/ijo.2017.4174
    Lung cancer remains a major health problem with a low 5-year survival rate of patients. Recent studies have shown that dysregulation of microRNAs (miRNAs) are prevalent in lung cancer and these aberrations play a significant role in the progression of tumour progression. In the present study, bioinformatics analyses was employed to predict potential miR-608 targets, which are associated with signaling pathways involved in cancer. Luciferase reporter assay identified AKT2 as a novel target of miR-608, and suppression of its protein levels was validated through western blot analysis. Zebrafish embryos were microinjected with cells transfected with miR-608 to elucidate the role of miR-608 in vivo, and immunostained with antibodies to detect activated caspase-3. We present the first evidence that miR-608 behaves as a tumour suppressor in A549 and SK-LU-1 cells through the regulation of AKT2, suggesting that selective targeting of AKT2 via miR-608 may be developed as a potential therapeutic strategy for miRNA-based non-small cell lung cancer (NSCLC) therapy.
    Matched MeSH terms: 3' Untranslated Regions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links