Displaying all 11 publications

Abstract:
Sort:
  1. Zhong X, Li Y, Zhang J, Han FS
    Org. Lett., 2015 Feb 6;17(3):720-3.
    PMID: 25602274 DOI: 10.1021/ol503734x
    The synthesis of a pentacyclic indole compound corresponding to the core structure of the misassigned indole alkaloid, tronoharine (1), is presented. The key reactions were a formal [3 + 3] cycloaddition of an indol-2-yl carbinol with an azadiene for the construction of the 6/5/6/6 tetracyclic system containing an all-carbon quaternary center and an intramolecular substitution reaction of an amine and a triflate for the creation of the bridged azepine ring. In addition, some other interesting transformations discovered during the synthetic studies are also discussed.
    Matched MeSH terms: Indole Alkaloids/chemical synthesis*
  2. Nge CE, Gan CY, Low YY, Thomas NF, Kam TS
    Org. Lett., 2013 Sep 20;15(18):4774-7.
    PMID: 23991636 DOI: 10.1021/ol4021404
    Two new indole alkaloids, voatinggine (1) and tabertinggine (2), which are characterized by previously unencountered natural product skeletons, were isolated from a Malayan Tabernaemontana species. The structures and absolute configuration of these alkaloids were determined using NMR and MS analysis, and X-ray diffraction analysis. A possible biogenetic pathway to these novel alkaloids from an iboga precursor, and via a common cleavamine-type intermediate, is presented.
    Matched MeSH terms: Indole Alkaloids/chemical synthesis*
  3. Kam TS, Choo YM
    Alkaloids Chem Biol, 2006;63:181-337.
    PMID: 17133716
    Matched MeSH terms: Indole Alkaloids/chemical synthesis
  4. Lim KH, Kam TS
    Org. Lett., 2006 Apr 13;8(8):1733-5.
    PMID: 16597153
    [structure: see text] A new indole alkaloid, arboflorine, possessing a novel pentacyclic carbon skeleton and incorporating a third nitrogen atom was obtained from the Malayan Kopsia arborea. The structure was established by spectroscopic analysis, and a possible biogenetic pathway from a preakuammicine-type precursor is presented.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids/chemical synthesis*
  5. Yeap JS, Saad HM, Tan CH, Sim KS, Lim SH, Low YY, et al.
    J Nat Prod, 2019 11 22;82(11):3121-3132.
    PMID: 31642315 DOI: 10.1021/acs.jnatprod.9b00712
    A methanol extract of the stem bark of the Malayan Alstonia penangiana provided seven new bisindole alkaloids, comprising six macroline-sarpagine alkaloids (angustilongines E-K, 1-6) and one macroline-pleiocarpamine bisindole alkaloid (angustilongine L, 7). Analysis of the spectroscopic data (NMR and MS) of these compounds led to the proposed structures of these alkaloids. The macroline-sarpagine alkaloids (1-6) showed in vitro growth inhibitory activity against a panel of human cancer cell lines, inclusive of KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, HT-29, HCT 116, and A549 cells (IC50 values: 0.02-9.0 μM).
    Matched MeSH terms: Alkaloids/chemical synthesis*; Indole Alkaloids/chemical synthesis*
  6. Low YY, Hong FJ, Lim KH, Thomas NF, Kam TS
    J Nat Prod, 2014 Feb 28;77(2):327-38.
    PMID: 24428198 DOI: 10.1021/np400922x
    Several transformations of the seco Aspidosperma alkaloid leuconolam were carried out. The based-induced reaction resulted in cyclization to yield two epimers, the major product corresponding to the optical antipode of a (+)-meloscine derivative. The structures and relative configuration of the products were confirmed by X-ray diffraction analysis. Reaction of leuconolam and epi-leuconolam with various acids, molecular bromine, and hydrogen gave results that indicated that the structure of the alkaloid, previously assigned as epi-leuconolam, was incorrect. This was confirmed by an X-ray diffraction analysis, which revealed that epi-leuconolam is in fact 6,7-dehydroleuconoxine. Short partial syntheses of the diazaspiro indole alkaloid leuconoxine and the new leuconoxine-type alkaloids leuconodines A and F were carried out.
    Matched MeSH terms: Indole Alkaloids/chemical synthesis
  7. Feng X, Jiang G, Xia Z, Hu J, Wan X, Gao JM, et al.
    Org. Lett., 2015 Sep 18;17(18):4428-31.
    PMID: 26315849 DOI: 10.1021/acs.orglett.5b02046
    The first enantioselective synthesis of (-)-conolutinine was achieved in 10 steps. The synthesis featured a catalytic asymmetric bromocyclization of tryptamine to forge the tricycle intermediate. Hydration of an alkene catalyzed by Co(acac)2 was also employed as a key step to diastereoselectively introduce the tertiary alcohol moiety. The absolute configuration of (-)-conolutinine was established to be (2S,5aS,8aS,13aR) based on this asymmetric total synthesis.
    Matched MeSH terms: Indole Alkaloids/chemical synthesis*
  8. Wong SP, Gan CY, Lim KH, Ting KN, Low YY, Kam TS
    Org. Lett., 2015 Jul 17;17(14):3628-31.
    PMID: 26183592 DOI: 10.1021/acs.orglett.5b01757
    A new monoterpene indole alkaloid characterized by an unprecedented pentacyclic cage skeleton, arboridinine (1), was isolated from a Malaysian Kopsia species. The structure and absolute configuration of the alkaloid were determined based on NMR, MS, and X-ray diffraction analysis. A possible biogenetic pathway from a pericine precursor is presented.
    Matched MeSH terms: Indole Alkaloids/chemical synthesis*
  9. Arjungi KN
    Arzneimittelforschung, 1976;26(5):951-6.
    PMID: 786304
    Areca cattechu Linn is commonly known as areca nut or betel nut. It is a very widely cultivated plant in eastern countries like India, Bangladesh, Ceylon, Malaya, the Philippines and Japan. The importance of this nut is due to its use for chewing purposes. It had an important place as a pharmaceutical in Ayurveda--the ancient Indian system of medicine--also in the Chinese medicinal practices. The pharmaceutical importance of areca nut is due to the presence of an alkaloid, arecoline. Synthetic arecoline hydrobromide is also shown to possess numerous pharmacological properties. Chewing of "betel quid" or areca nut is a typical oriental habit. Betel quid comprises betel leaf, areca nut, catechu, lime and sometimes also tobacco. It is shown that there exists a correlationship between betel quid or areca nut chewing habit and oral cancer. A number of investigators have been able to produce cellular changes such as leukoplakia by application of betel quid or areca nut extract to the buccal mucosa of different animal.
    Matched MeSH terms: Alkaloids/chemical synthesis
  10. Gan CY, Robinson WT, Etoh T, Hayashi M, Komiyama K, Kam TS
    Org. Lett., 2009 Sep 3;11(17):3962-5.
    PMID: 19708704 DOI: 10.1021/ol9016172
    A cytotoxic bisindole alkaloid possessing an unprecedented structure constituted from the union of an eburnan half and a novel vinylquinoline alkaloid has been isolated from Leuconotis griffithii. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway to the novel quinolinic coupling partner is presented from an Aspidosperma precursor.
    Matched MeSH terms: Indole Alkaloids/chemical synthesis*
  11. Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, et al.
    Sci Rep, 2018 Jul 13;8(1):10617.
    PMID: 30006510 DOI: 10.1038/s41598-018-28880-2
    The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.
    Matched MeSH terms: Indole Alkaloids/chemical synthesis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links