Displaying publications 1 - 20 of 71 in total

Abstract:
Sort:
  1. Ng QR, Tee KK, Binley JM, Tong T
    AIDS Res Hum Retroviruses, 2022 Feb;38(2):162-172.
    PMID: 34006141 DOI: 10.1089/AID.2020.0299
    Human immunodeficiency virus type-1 (HIV-1) antigenic variation poses a great challenge for vaccine immunogen design to elicit broadly neutralizing antibodies (bNAbs). Over the last 10-15 years, great progress has been made to understand the conserved sites of sensitivity on HIV envelope glycoprotein spikes targeted by bNAbs. Plasma neutralization mapping and monoclonal antibody isolation efforts have revealed five major conserved epitope clusters. Most of this work has focused on subtype B and C-infected Caucasian or African donors. It is not clear if the same epitopes and epitope rank order preferences are also true in donors infected with different HIV-1 subtypes and with different racial backgrounds. To investigate this point, in this study we report the first attempt to profile the bNAb specificities of CRF01_AE-infected Malaysian plasmas. We first measured neutralization titers of 21 plasmas against a subtype A, B, and AE pseudovirus panel. This revealed that 14% (3 of 21) plasmas had cross-clade breadth. Focusing on the cross-neutralizing plasma P9, we used AE and JR-FL mutant pseudoviruses, gp120 monomer interference, and native polyacrylamide gel electrophoresis to better understand the neutralization specificity. P9 demonstrates CD4-binding-site specificity with trimer dependence and D368 independence.
    Matched MeSH terms: Antibodies, Neutralizing
  2. Leong PK, Tan CH, Sim SM, Fung SY, Sumana K, Sitprija V, et al.
    Acta Trop, 2014 Apr;132:7-14.
    PMID: 24384454 DOI: 10.1016/j.actatropica.2013.12.015
    Snake envenomation is a serious public health threat in many rural areas of Asia and Africa. Antivenom has hitherto been the definite treatment for snake envenomation. Owing to a lack of local production of specific antivenom, most countries in these regions fully depend on foreign supplies of antivenoms. Often, the effectiveness of the imported antivenoms against local medically important species has not been validated. This study aimed to assess cross-neutralizing capacity of a recently developed polyvalent antivenom, Hemato Polyvalent Snake Antivenom (HPAV), against venoms of a common viper and some pit vipers from Southeast Asia. Neutralisation assays showed that HPAV was able to effectively neutralize lethality of the common Southeast Asian viperid venoms examined (Calloselasma, Crytelytrops, Popeia, and Daboia sp.) except for Tropidolaemus wagleri venom. HPAV also effectively neutralized the procoagulant and hemorrhagic activities of all the venoms examined, corroboratively supporting the capability of HPAV in neutralizing viperid venoms which are principally hematoxic. The study also indicated that HPAV fully prevented the occurrence of hematuria and proteinuria in mice envenomed with Thai Daboia siamensis venom but was only partially effective against venoms of Myanmar D. siamensis. Thus, HPAV appears to be useful against its homologous venoms and venoms from Southeast Asian viperids including several medically important pit vipers belonging to the Trimeresurus complex. Nevertheless, the effectiveness of HPAV as a paraspecific antivenom for treatment of viperid envenomation in Southeast Asian region requires further assessment from future clinical trials.
    Matched MeSH terms: Antibodies, Neutralizing/immunology*
  3. Tan CH, Tan NH, Sim SM, Fung SY, Gnanathasan CA
    Acta Trop, 2012 Jun;122(3):267-75.
    PMID: 22322247 DOI: 10.1016/j.actatropica.2012.01.016
    Envenomation by hump-nosed pit viper (Hypnale hypnale, Hh) in Sri Lanka has caused significant morbidity and mortality, attributed to 35% of total venomous snakebites. In Southwestern India (Kerala), H. hypnale was increasingly identified as a dangerous and common source of envenomation, second to the Russell's viper but ahead of the cobra bites. Unfortunately, there is still no specific antivenom to date. This study aims to investigate the immunological properties of the venom and to assess the feasibility of specific Hh antivenom production as well as the development of a diagnostic assay. Hh venom elicited satisfactory titers of anti-Hh IgG in rabbits after 3rd immunization. The anti-Hh IgG, isolated with caprylic acid precipitation method, was effective in neutralizing the venom lethality (potency=48 LD(50) per ml IgG) as well as its procoagulant, hemorrhagic and necrotic effects, indicating the possibility to produce the specific antivenom using the common immunization regime. Cross-reactivity studies using indirect ELISA showed that anti-Hh IgG cross-reacted extensively with several Asiatic crotalid venoms, particularly that of Calloselasma rhodostoma (73.6%), presumably due to the presence of venom antigens common to both snakes. Levels of immunological cross-reactivity were vastly reduced with double-sandwich ELISA. Further work demonstrated that the assay was able to distinguish and quantify venoms of H. hypnale, Daboia russelii and Echis carinatus sinhaleyus (three common local viperid) used to spike human sera at various concentrations. The assay hence may be a useful investigating tool for diagnosing biting species and studying the time course profile of venom concentrations in blood.
    Matched MeSH terms: Antibodies, Neutralizing/isolation & purification; Antibodies, Neutralizing/therapeutic use
  4. Leong PK, Fung SY, Tan CH, Sim SM, Tan NH
    Acta Trop, 2015 Sep;149:86-93.
    PMID: 26026717 DOI: 10.1016/j.actatropica.2015.05.020
    The low potency of cobra antivenom has been an area of concern in immunotherapy for cobra envenomation. This study sought to investigate factors limiting the neutralizing potency of cobra antivenom, using a murine model. We examined the immunological reactivity and neutralizing potency of a Thai polyvalent antivenom against the principal toxins of Naja sumatrana (Equatorial spitting cobra) venom and two related Asiatic cobra venom α-neurotoxins. The antivenom possesses moderate neutralizing potency against phospholipases A2 (P, potency of 0.98mg/mL) and moderately weak neutralizing potency against long-chain α-neurotoxins (0.26-0.42mg/mL) but was only weakly effective in neutralizing the short-chain α-neurotoxins and cardiotoxins (0.05-0.08mg/mL). The poor neutralizing potency of the antivenom on the low molecular mass short-chain neurotoxins and cardiotoxins is presumably the main limiting factor of the efficacy of the cobra antivenom. Our results also showed that phospholipase A2, which exhibited the highest ELISA reactivity and avidity, was most effectively neutralized, whereas N. sumatrana short-chain neurotoxin, which exhibited the lowest ELISA reactivity and avidity, was least effectively neutralized by the antivenom. These observations suggest that low immunoreactivity (low ELISA reactivity and avidity) is one of the reasons for poor neutralization of the cobra venom low molecular mass toxins. Nevertheless, the overall results show that there is a lack of congruence between the immunological reactivity of the toxins toward antivenom and the effectiveness of toxin neutralization by the antivenom, indicating that there are other factors that also contribute to the weak neutralization capacity of the antivenom. Several suggestions have been put forward to overcome the low efficacy of the cobra antivenom. The use of a 'proper-mix' formulation of cobra venoms as immunogen, whereby the immunogen mixture used for hyperimmunization contains a mix of various types of α-neurotoxins and cardiotoxins in sufficient amount, may also help to improve the efficacy and broaden the neutralization spectrum of the antivenom.
    Matched MeSH terms: Antibodies, Neutralizing/immunology*
  5. POND WL, RUSS SB, LANCASTER WE, AUDY JR, SMADEL JE
    Am J Hyg, 1954 Jan;59(1):17-25.
    PMID: 13124320
    Matched MeSH terms: Antibodies, Neutralizing*
  6. Tan SH, Ong KC, Perera D, Wong KT
    Antiviral Res, 2016 Aug;132:196-203.
    PMID: 27340013 DOI: 10.1016/j.antiviral.2016.04.015
    BACKGROUND: Enterovirus A71 (EV-A71) encephalomyelitis is an often fatal disease for which there is no specific treatment available. Passive immunization with a specific monoclonal antibody to EV-A71 was used on a murine model of EV-A71 encephalomyelitis to evaluate its therapeutic effectiveness before and after established central nervous system (CNS) infection.

    METHODS: Mice were intraperitoneally-infected with a mouse-adapted EV-A71 strain and treated with a dose of monoclonal antibody (MAb) daily for 3 days on day 1, 2 and 3 post-infection or for 3 days on 3, 4 and 5 post-infection. Treatment effectiveness was evaluated by signs of infection and survival rate. Histopathology and qPCR analyses were performed on mice sacrificed a day after completing treatment.

    RESULTS: In mock-treated mice, CNS infection was established from day 3 post-infection. All mice treated before established CNS infection, survived and recovered completely without CNS infection. All mice treated after established CNS infection survived with mild paralysis, and viral load and antigens/RNA at day 6 post-infection were significantly reduced.

    CONCLUSIONS: Passive immunization with our MAb could prevent CNS infection in mice if given early before the establishment of CNS infection. It could also ameliorate established CNS infection if optimal and repeated doses were given.

    Matched MeSH terms: Antibodies, Neutralizing/immunology; Antibodies, Neutralizing/pharmacology*
  7. Yeo AS, Rathakrishnan A, Wang SM, Ponnampalavanar S, Manikam R, Sathar J, et al.
    Biomed Res Int, 2015;2015:420867.
    PMID: 25815314 DOI: 10.1155/2015/420867
    Dengue virus infection is a common tropical disease which often occurs without being detected. These asymptomatic cases provide information in relation to the manifestation of immunological aspects. In this study, we developed an ELISA method to compare neutralizing effects of dengue prM and E antibodies between dengue patients and their asymptomatic household members. Recombinant D2 premembrane (prM) was constructed, cloned, and tested for antigenicity. The recombinant protein was purified and tested with controls by using an indirect ELISA method. Positive dengue serum samples with their asymptomatic pair were then carried out onto the developed ELISA. In addition, commercially available recombinant envelope (E) protein was used to develop an ELISA which was tested with the same set of serum samples in the prM ELISA. Asymptomatic individuals showed preexisting heterotypic neutralizing antibodies. The recombinant prM was antigenically reactive in the developed ELISA. Dengue patients had higher prM and E antibodies compared to their household members. Our study highlights the neutralizing antibodies levels with respect to dengue prM and E between dengue patients and asymptomatic individuals.
    Matched MeSH terms: Antibodies, Neutralizing/immunology
  8. Gordon Smith CE, Turner LH, Armitage P
    Bull World Health Organ, 1962;27:717-27.
    PMID: 13993152
    Because of the risk of introduction of yellow fever to South-East Asia, comparative studies were made of yellow fever vaccination in Malayans who had a high prevalence of antibody to related viruses and in volunteers without related antibody. The proportions of positive neutralizing antibody responses to subcutaneous vaccination with 17D vaccine were not significantly different between volunteers with and without heterologous antibody but the degree of antibody response was greater in those without. The ID(50) of 17D in both groups was about 5 mouse intracerebral LD(50). Multiple puncture vaccination with 17D gave a much lower response rate than subcutaneous vaccination in volunteers with heterologous antibody. In both groups subcutaneous doses of about 50 mouse intracerebral LD(50) gave larger antibody responses than higher doses. The neutralizing indices and analysis of results were calculated by a method based on the survival time of the mice. This method, which has advantages over that of Reed & Muench, is fully described in an annex to this paper.
    Matched MeSH terms: Antibodies, Neutralizing*
  9. Khan K, Lustig G, Bernstein M, Archary D, Cele S, Karim F, et al.
    Clin Infect Dis, 2022 Aug 24;75(1):e857-e864.
    PMID: 34893824 DOI: 10.1093/cid/ciab1008
    BACKGROUND: People living with HIV (PLWH) have been reported to have a higher risk of more severe COVID-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2-infected unvaccinated participants.

    METHODS: We enrolled participants who were vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in healthcare workers (HCWs). PLWH in this group had well-controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant.

    RESULTS: Most Ad26.CoV2.S vaccinated HCWs were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared with the infected-only group and 26-fold higher relative to the vaccinated-only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2-infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of nonresponders, with the highest frequency of nonresponders in people with HIV viremia. Vaccinated-only participants showed low neutralization capacity.

    CONCLUSIONS: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well-controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2-infected and nonvaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals.

    Matched MeSH terms: Antibodies, Neutralizing
  10. Watanabe S, Omatsu T, Miranda ME, Masangkay JS, Ueda N, Endo M, et al.
    Comp Immunol Microbiol Infect Dis, 2010 Jan;33(1):25-36.
    PMID: 18789527 DOI: 10.1016/j.cimid.2008.07.008
    To reveal whether bats serve as an amplifying host for Yokose virus (YOKV), we conducted a serological survey and experimentally infected fruit bats with YOKV isolated from microbats in Japan. YOKV belongs to the Entebbe bat virus group of vector unknown group within the genus Flavivirus and family Flaviviridae. To detect antibodies against YOKV, we developed an enzyme-linked immunosorbent assay (ELISA) using biotinylated anti-bat IgG rabbit sera. Serological surveillance was conducted with samples collected in the Philippines and the sera supplied from Malaysia. One of the 36 samples from the Philippines (2.7%) and 5 of the 26 samples from Malaysia (19%) had detectable ELISA antibodies. In the experimental infections, no clinical signs of disease were observed. Moreover, no significant viral genome amplification was detected. These findings revealed that YOKV replicates poorly in the fruit bat, suggesting that fruit bats do not seem to serve as an amplifying host for YOKV.
    Matched MeSH terms: Antibodies, Neutralizing/blood
  11. Rahman SA, Hassan L, Epstein JH, Mamat ZC, Yatim AM, Hassan SS, et al.
    Emerg Infect Dis, 2013 Jan;19(1):51-60.
    PMID: 23261015 DOI: 10.3201/eid1901.120221
    We conducted cross-sectional and longitudinal studies to determine the distribution of and risk factors for seropositivity to Nipah virus (NiV) among Pteropus vampyrus and P. hypomelanus bats in Peninsular Malaysia. Neutralizing antibodies against NiV were detected at most locations surveyed. We observed a consistently higher NiV risk (odds ratio 3.9) and seroprevalence (32.8%) for P. vampyrus than P. hypomelanus (11.1%) bats. A 3-year longitudinal study of P. hypomelanus bats indicated nonseasonal temporal variation in seroprevalence, evidence for viral circulation within the study period, and an overall NiV seroprevalence of 9.8%. The seroprevalence fluctuated over the study duration between 1% and 20% and generally decreased during 2004-2006. Adult bats, particularly pregnant, with dependent pup and lactating bats, had a higher prevalence of NiV antibodies than juveniles. Antibodies in juveniles 6 months-2 years of age suggested viral circulation within the study period.
    Matched MeSH terms: Antibodies, Neutralizing/blood*; Antibodies, Neutralizing/immunology
  12. Liew MNY, Kua KP, Lee SWH, Wong KK
    Front Immunol, 2023;14:1100263.
    PMID: 37701439 DOI: 10.3389/fimmu.2023.1100263
    INTRODUCTION: The COVID-19 pandemic is a major global public health crisis. More than 2 years into the pandemic, effective therapeutic options remain limited due to rapid viral evolution. Stemming from the emergence of multiple variants, several monoclonal antibodies are no longer suitable for clinical use. This scoping review aimed to summarize the preclinical and clinical evidence for bebtelovimab in treating newly emerging SARS-CoV-2 variants.

    METHODS: We systematically searched five electronic databases (PubMed, CENTRAL, Embase, Global Health, and PsycINFO) from date of inception to September 30, 2022, for studies reporting on the effect of bebtelovimab in SARS-CoV-2 infection, using a combination of search terms around -bebtelovimab‖, -LY-CoV1404‖, -LY3853113‖, and -coronavirus infection‖. All citations were screened independently by two researchers. Data were extracted and thematically analyzed based on study design by adhering to the stipulated scoping review approaches.

    RESULTS: Thirty-nine studies were included, thirty-four non-clinical studies were narratively synthesized, and five clinical studies were meta-analyzed. The non-clinical studies revealed bebtelovimab not only potently neutralized wide-type SARS-CoV-2 and existing variants of concern such as B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but also retained appreciable activity against Omicron lineages, including BA.2.75, BA.4, BA.4.6, and BA.5. Unlike other monoclonal antibodies, bebtelovimab was able to bind to epitope of the SARS-CoV-2 S protein by exploiting loop mobility or by minimizing side-chain interactions. Pooled analysis from clinical studies depicted that the rates of hospitalization, ICU admission, and death were similar between bebtelovimab and other COVID-19 therapies. Bebtelovimab was associated with a low incidence of treatment-emergent adverse events.

    CONCLUSION: Preclinical evidence suggests bebtelovimab be a potential treatment for COVID-19 amidst viral evolution. Bebtelovimab has comparable efficacy to other COVID-19 therapies without evident safety concerns.

    Matched MeSH terms: Antibodies, Neutralizing/therapeutic use
  13. Ghagane SC, Puranik SI, Gan SH, Hiremath MB, Nerli RB, Ravishankar MV
    Hum Antibodies, 2017;26(3):135-142.
    PMID: 29060935 DOI: 10.3233/HAB-170331
    With the flourishing of innovation in drug discovery into a new era of personalized therapy, the use of monoclonal antibodies (mAbs) in the treatment of various ailments lies at the forefront. Major improvements in genetic sequencing and biomedical techniques as well as research into mAbs emphasize on determining new targets for advanced therapy while maximizing efficacy for clinical application. However, a balance has to be achieved concerning developing a target with low toxicity combined with high specificity and versatility, to allow a specific antibody to facilitate several biotic effects, ranging from neutralization of virus mechanisms to modulation of immune response and maintaining low global economic cost. Presently, there are approximately 30 mAbs' permitted for therapeutic use with many more being tested in clinical trials. Nevertheless, the heavy cost of mAbs' production, stowage and management as well as the subsequent hindrances to their development are outweighed by mAbs' clinical advantages. Compared to conventional drugs, since mAbs use as pharmacologic iotas have specific physical features and modes of action, they should be considered as a discrete therapeutic category. In this review, the history of mAb generation and the innovative technological applications of mAbs that has advanced in clinical practices is reviewed.
    Matched MeSH terms: Antibodies, Neutralizing/immunology
  14. Saeed MI, Omar AR, Hussein MZ, Elkhidir IM, Sekawi Z
    Hum Vaccin Immunother, 2015;11(10):2414-24.
    PMID: 26186664 DOI: 10.1080/21645515.2015.1052918
    This study introduces a new approach for enhancing immunity toward mucosal vaccines. HEV71 killed vaccine that is formulated with nanosize calcium phosphate adjuvant and encapsulated onto chitosan and alginate delivery carriers was examined for eliciting antibody responses in serum and saliva collected at weeks 0, 1, 3, 5, 7 and 9 for viral-specific IgA & IgG levels and viral neutralizing antibody titers. The antibody responses induced in rabbits by the different formulations delivered by a single (buccal) route were compared to those of dual immunization (intradermal / mucosal) and un-immunized control. Chitosan-loaded vaccine adjuvant induced elevated IgA antibody, while Alginate-adjuvant irreversible bonding sequestered the vaccine and markedly reduced immunogenicity. The induced mucosal and parenteral antibody profiles appeared in an inverse manner of enhanced mucosal IgA antibody accompanied by lower systemic IgG following a single oral immunization route. The combined intradermal and oral dual-immunized group developed an elevated salivary IgA, systemic IgG, and virus neutralizing response. A reduced salivary neutralizing antibody titer was observed and attributed to the continual secretion exchanges in saliva. Designing a successful mucosal delivery formulation needs to take into account the vaccine delivery site, dosage, adjuvant and carrier particle size, charge, and the reversibility of component interactions. The dual immunization seems superior and is a important approach for modulating the antibody response and boosting mucosal protection against HEV71 and similar pathogens based on their transmission mode, tissue tropism and shedding sites. Finally, the study has highlighted the significant role of dual immunization for simultaneous inducing and modulating the systemic and mucosal immune responses to EV71.
    Matched MeSH terms: Antibodies, Neutralizing/analysis*; Antibodies, Neutralizing/blood
  15. Wan Shuaib WMA, Badaruddin IA, Mansor M, Salleh SA, Hassan MR, Lindong S, et al.
    Hum Vaccin Immunother, 2023 Dec 15;19(3):2266931.
    PMID: 37828861 DOI: 10.1080/21645515.2023.2266931
    Neutralizing antibodies (NTAb) play a significant role in preventing and protecting against SARS-CoV-2 virus infection. Identifying NTAb is undoubtedly imperative in understanding the immunity toward COVID-19 better. However, it is interesting to note that the production of NTAb varies among individuals, especially among healthcare workers (HCWs), as they are exposed to the virus daily. Hence, we would like to investigate factors affecting the production of S-RBD IgG and NTAb among different categories of HCWs, particularly after receiving the third dose of the BNT162b2 mRNA COVID-19 Vaccine. A total of 361 HCWs from our hospital were prospectively enrolled and had their S-RBD IgG and NTAb titers measured. They were studied in relation to the degree of exposure to COVID-19, breakthrough infections, gender, age, race, household income, housing type, household number, and education levels. HCWs with the highest risk of exposure to COVID-19, breakthrough infections, and male gender displayed the highest median titers of both S-RBD IgG and NTAb, and the differences were statistically significant (p 
    Matched MeSH terms: Antibodies, Neutralizing
  16. Bu W, Joyce MG, Nguyen H, Banh DV, Aguilar F, Tariq Z, et al.
    Immunity, 2019 05 21;50(5):1305-1316.e6.
    PMID: 30979688 DOI: 10.1016/j.immuni.2019.03.010
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with epithelial-cell cancers and B cell lymphomas. An effective EBV vaccine is not available. We found that antibodies to the EBV glycoprotein gH/gL complex were the principal components in human plasma that neutralized infection of epithelial cells and that antibodies to gH/gL and gp42 contributed to B cell neutralization. Immunization of mice and nonhuman primates with nanoparticle vaccines that displayed components of the viral-fusion machinery EBV gH/gL or gH/gL/gp42 elicited antibodies that potently neutralized both epithelial-cell and B cell infection. Immune serum from nonhuman primates inhibited EBV-glycoprotein-mediated fusion of epithelial cells and B cells and targeted an epitope critical for virus-cell fusion. Therefore, unlike the leading EBV gp350 vaccine candidate, which only protects B cells from infection, these EBV nanoparticle vaccines elicit antibodies that inhibit the virus-fusion apparatus and provide cell-type-independent protection from virus infection.
    Matched MeSH terms: Antibodies, Neutralizing/immunology*
  17. Cale EM, Gorman J, Radakovich NA, Crooks ET, Osawa K, Tong T, et al.
    Immunity, 2017 05 16;46(5):777-791.e10.
    PMID: 28514685 DOI: 10.1016/j.immuni.2017.04.011
    Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.
    Matched MeSH terms: Antibodies, Neutralizing/immunology*; Antibodies, Neutralizing/metabolism; Antibodies, Neutralizing/chemistry
  18. Kow CS, Ramachandram DS, Hasan SS
    Immunopharmacol Immunotoxicol, 2022 Feb;44(1):28-34.
    PMID: 34762561 DOI: 10.1080/08923973.2021.1993894
    AIM: Several randomized trials have evaluated the effect of neutralizing monoclonal antibodies on the risk of hospital admission and risk of mortality in patients with COVID-19. We aimed to summarize the overall evidence in the form of a systematic review and meta-analysis.

    METHODS: A systematic literature search with no language restriction was performed in electronic databases and preprint repositories to identify eligible studies published up to 29 June 2021. The outcomes of interest were hospital admission and all-cause mortality. A random-effects model was used to estimate the pooled odds ratio (OR) for outcomes of interest with the use of neutralizing monoclonal antibodies relative to nonuse of neutralizing monoclonal antibodies, at 95% confidence intervals (CI).

    RESULTS: Our systematic literature search identified nine randomized controlled trials. Three trials had an overall low risk of bias, while four trials had some concerns in the overall risk of bias. The meta-analysis revealed no statistically significant difference in the odds of mortality (pooled OR = 0.69; 95% CI 0.33-1.47), but a statistically significant reduction in the odds of hospital admission (pooled OR = 0.29; 95% CI 0.21-0.42), with the administration of a neutralizing monoclonal antibody among patients with COVID-19, relative to non-administration of a neutralizing monoclonal antibody, at the current sample size.

    CONCLUSION: The reduced risk of hospital admission with neutralizing monoclonal antibodies use suggests that the timing of neutralizing antibodies administration is key in preventing hospital admission and, ultimately, death. Future randomized trials should aim to determine if the clinical outcomes with neutralizing monoclonal antibodies differ based on serostatus.

    Matched MeSH terms: Antibodies, Neutralizing/therapeutic use*
  19. Panda S, Banik U, Adhikary AK
    Infect Genet Evol, 2020 11;85:104439.
    PMID: 32585339 DOI: 10.1016/j.meegid.2020.104439
    Human adenovirus type 3 (HAdV-3) encompasses 15-87% of all adenoviral respiratory infections. The significant morbidity and mortality, especially among the neonates and immunosuppressed patients, demand the need for a vaccine or a targeted antiviral against this type. However, due to the existence of multiple hexon variants (3Hv-1 to 3Hv-25), the selection of vaccine strains of HAdV-3 is challenging. This study was designed to evaluate HAdV-3 hexon variants for the selection of potential vaccine candidates and the use of hexon gene as a target for designing siRNA that can be used as a therapy. Based on the data of worldwide distribution, duration of circulation, co-circulation and their percentage among all the variants, 3Hv-1 to 3Hv-4 were categorized as the major hexon variants. Phylogenetic analysis and the percentage of homology in the hypervariable regions followed by multi-sequence alignment, zPicture analysis and restriction enzyme analysis were carried out. In the phylogram, the variants were arranged in different clusters. The HVR encoding regions of hexon of 3Hv-1 to 3Hv-4 showed 16 point mutations resulting in 12 amino acids substitutions. The homology in HVRs was 81.81-100%. Therefore, the major hexon variants are substantially different from each other which justifies their inclusion as the potential vaccine candidates. Interestingly, despite the significant differences in the DNA sequence, there were many conserved areas in the HVRs, and we have designed functional siRNAs form those locations. We have also designed immunogenic vaccine peptide epitopes from the hexon protein using bioinformatics prediction tool. We hope that our developed siRNAs and immunogenic vaccine peptide epitopes could be used in the future development of siRNA-based therapy and designing a vaccine against HAdV-3.
    Matched MeSH terms: Antibodies, Neutralizing/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links