Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Cardosa MJ
    Lancet, 1987 Jan 24;1(8526):193-4.
    PMID: 2880019
    Acute-phase serum samples collected during an outbreak of dengue fever and dengue haemorrhagic fever in Penang, Malaysia, were tested by a method involving antibody-dependent enhancement of infectivity in the mouse macrophage-like cell line, P388D1. 58 of 71 (81.7%) serologically positive cases yielded virus.
    Matched MeSH terms: Antibodies, Viral/immunology*
  2. Thoe SY, Sam CK, Cheng HM, Prasad U
    J Med Virol, 1989 Dec;29(4):311-4.
    PMID: 2559955
    Serum antibodies against Epstein-Barr virus (EBV)-determined antigens have traditionally been titrated by the indirect immunofluorescence (IIF) technique. The avidin-biotin complex (ABC) immunocytochemical technique was used to determine the serum levels of IgA against EBV viral capsid antigen (IgA/VCA) and IgA against EBV early antigen (IgA/EA) in sera of 106 nasopharyngeal carcinoma (NPC) patients prior to treatment and 100 normal individuals. The sensitivity of the ABC technique is enhanced by an amplification of the antigen-antibody reaction, which involves the binding of the enzyme-linked ABC to the second biotinylated antibody. There was a good correlation (r = 0.9988) between ABC and IIF-determined IgA/VCA-positive titres, with the ABC technique being more sensitive than IIF in the detection of IgA/VCA in NPC sera: 94% (99/106) and 76% (80/106), respectively. The frequency of IgA/EA reactivity in NPC sera was also markedly increased by immunodetection with the ABC technique as compared with IIF technique: 63% (69/106) and 28% (30/106) respectively. Both the immunocytochemical techniques were equally specific in discriminating between elevated serum titres of IgA/VCA and IgA/EA in NPC sera from normal human sera.
    Matched MeSH terms: Antibodies, Viral/immunology
  3. Vythilingam I, Oda K, Chew TK, Mahadevan S, Vijayamalar B, Morita K, et al.
    J Am Mosq Control Assoc, 1995 Mar;11(1):94-8.
    PMID: 7616198
    Detection and isolation of Japanese encephalitis (JE) virus were attempted from female mosquitoes collected in Kampong Pasir Panjang, Sabak Bernam, Selangor, from May to November 1992. A total of 7,400 mosquitoes consisting of 12 species in 148 pools were processed and inoculated into Aedes albopictus clone C6/36 cell cultures. Of these, 26 pools showed the presence of viral antigens in the infected C6/36 cells by specific immunoperoxidase staining using an anti-JE virus polyclonal antibody. Presence of JE virus genome was confirmed in the infected culture fluid for 16 pools by using reverse transcriptase-polymerase chain reaction and JE virus-specific primers. Of these, 3 pools were from Culex tritaeniorhynchus, 4 from Culex vishnui, 3 from Culex bitaeniorhynchus, 2 from Culex sitiens, one from Aedes species, and 3 from Culex species. Isolation of JE virus from Cx. sitiens, Cx. bitaeniorhynchus, and Aedes sp. (Aedes butleri and Ae. albopictus) is reported for the first time in Malaysia.
    Matched MeSH terms: Antibodies, Viral/immunology
  4. Druka A, Burns T, Zhang S, Hull R
    J Gen Virol, 1996 Aug;77 ( Pt 8):1975-83.
    PMID: 8760450
    Rice tungro spherical virus (RTSV) has an RNA genome of more than 12 kb with various features which classify it as a plant picornavirus. The capsid comprises three coat protein (CP) species, CP1, CP2 and CP3, with predicted molecular masses of 22.5, 22.0 and 33 kDa, respectively, which are cleaved from a polyprotein. In order to obtain information on the properties of these proteins, each was expressed in E. coli, purified as a fusion to the maltose-binding protein and used for raising a polyclonal antiserum. CP1, CP2 and CP3 with the expected molecular masses were detected specifically in virus preparations. CP3 is probably the major antigenic determinant on the surface of RTSV particles, as was shown by ELISA, Western blotting and immunogold electron microscopy using antisera obtained against whole virus particles and to each CP separately. In some cases, especially in crude extracts, CP3 antiserum detected several other proteins (40-42 kDa), which could be products of CP3 post-translational modification. No serological differences were detected between the three CPs from isolates from the Philippines, Thailand, Malaysia and India. The CP3-related 40-42 kDa proteins of the Indian RTSV isolate have a slightly higher electrophoretic mobility (42-44 kDa) and a different response to cellulolytic enzyme preparations, which allows them to be differentiated from south-east Asian isolates.
    Matched MeSH terms: Antibodies, Viral/immunology
  5. AbuBakar S, Azmi A, Mohamed-Saad N, Shafee N, Chee HY
    Malays J Pathol, 1997 Jun;19(1):41-51.
    PMID: 10879241
    The present study was undertaken to investigate the antibody responses of dengue fever (DF) patients to specific dengue virus proteins. Partially purified dengue 2 New Guinea C (NGC) strain virus was used as antigen. Under the present experimental protocols, it was observed that almost all DF patients' sera had detectable presence of antibodies which recognize the dengue 2 envelope (E) protein. The convalescent-phase sera especially had significant detectable IgG, IgM and IgE against the protein. In addition, IgGs specific against the NS1 dimer and PrM were also detected. Antibody against the core (C) protein, however, was not detectable in any of the DF patients' sera. The substantial presence of IgG against the PrM in the convalescent-phase sera, and the presence of IgE specific for the E, reflect the potential importance of these antibody responses in the pathogenesis of dengue.
    Matched MeSH terms: Antibodies, Viral/immunology*
  6. Ross RS, Viazov S, Schmitt U, Schmolke S, Tacke M, Ofenloch-Haehnle B, et al.
    J Med Virol, 1998 Feb;54(2):103-6.
    PMID: 9496367
    Since the identification of the new human virus, GB virus C (GBV-C)/hepatitis G-virus (HGV), in 1995/1996, reverse transcription polymerase chain reaction remained the sole available diagnostic tool for GBV-C/HGV infection. Recently, a serologic test based on the detection of antibodies to the putative envelope protein 2 (anti-E2) has been introduced. We used this assay for a seroepidemiological survey including 3,314 healthy individuals from different parts of the world, 123 patients from Germany who were suspected to have an increased risk of acquiring GBV-C/HGV infection, 128 multiple organ donors, and 90 GBV-C/HGV RNA positive persons. In European countries, anti-E2 seropositivity ranged from 10.9% (Germany) to 15.3% (Austria). In South Africa (20.3%) and Brazil (19.5%), even higher anti-E2 prevalence rates were recorded. In Asian countries like Bhutan (3.9%), Malaysia (6.3%), and the Philippines (2.7%), anti-E2 positivity was significantly lower. GBV-C/HGV anti-E2 prevalence in potential "risk groups," i.e., patients on hemodialysis and renal transplant recipients, did not vary significantly from anti-E2 seroprevalence in German blood donors. Anti-E2 and GBV-C/HGV RNA were found to be mutually exclusive, confirming the notion that anti-E2 has to be considered as a marker of past infection.
    Matched MeSH terms: Antibodies, Viral/immunology
  7. Kit Lam S, Lan Ew C, Mitchell JL, Cuzzubbo AJ, Devine PL
    Clin Diagn Lab Immunol, 2000 Sep;7(5):850-2.
    PMID: 10973469
    A commercially available enzyme-linked immunosorbent assay (ELISA) (PanBio Dengue Screening ELISA) that utilized both immunoglobulin M (IgM) and IgG capture in the same microtiter well for the diagnosis of dengue infection was evaluated. Sensitivity in primary and secondary dengue was 95%, while specificity was 94%.
    Matched MeSH terms: Antibodies, Viral/immunology
  8. Pletnev AG
    Virology, 2001 Apr 10;282(2):288-300.
    PMID: 11289811
    Forty-five years ago a naturally attenuated tick-borne flavivirus, Langat (LGT) strain TP21, was recovered from ticks in Malaysia. Subsequently, it was tested as a live attenuated vaccine for virulent tick-borne encephalitis viruses. In a large clinical trial its attenuation was confirmed but there was evidence of a low level of residual virulence. Thirty-five years ago further attenuation of LGT TP21 was achieved by multiple passages in eggs to yield mutant E5. To study the genetic determinants of the further attenuation exhibited by E5 and to allow us to manipulate the genome of this virus for the purpose of developing a satisfactory live attenuated tick-borne flavivirus vaccine, we recovered infectious E5 virus from a full-length cDNA clone. The recombinant E5 virus (clone 651) recovered from a full-length infectious cDNA clone was more attenuated in immunodeficient mice than that of its biologically derived E5 parent. Increase in attenuation was associated with three amino acid substitutions, two located in the structural protein E and one in nonstructural protein NS4B. Subsequently an even greater degree of attenuation was achieved by creating a viable 320 nucleotide deletion in the 3'-noncoding region of infectious full-length E5 cDNA. This deletion mutant was not cytopathic in simian Vero cells and it replicated to lower titer than its E5-651 parent. In addition, the E5 3' deletion mutant was less neuroinvasive in SCID mice than its E5-651 parent. Significantly, the deletion mutant proved to be 119,750 times less neuroinvasive in SCID mice than its progenitor, LGT strain TP21. Despite its high level of attenuation, the E5 3' deletion mutant remained highly immunogenic and intraperitoneal (ip) inoculation of 10 PFU induced complete protection in Swiss mice against subsequent challenge with 2000 ip LD50 of the wild-type LGT TP21.
    Matched MeSH terms: Antibodies, Viral/immunology
  9. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, et al.
    Microbes Infect., 2002 Feb;4(2):145-51.
    PMID: 11880045
    In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.
    Matched MeSH terms: Antibodies, Viral/immunology
  10. Abubakar S, Azila A, Suzana M, Chang LY
    Malays J Pathol, 2002 Jun;24(1):29-36.
    PMID: 16329553
    At least three major antigenic dengue 2 virus proteins were recognized by pooled dengue fever patients' sera in infected Aedes albopictus (C6/36) mosquito cells. Dengue virus envelope (E), premembrane (PrM) and non-structural protein 1 (NS 1) dimer were detected beginning on day 3 postinfection in both the cell membrane and cytosolic fractions. Using the patients' sera, the presence of antigenic intermediate core protein (C)-PrM and NS1-non-structural protein 2a (NS2a) in the cytoplasmic fraction of dengue 2 virus infected cells was revealed. The presence of a approximately 92 and approximately 84 kDa NS 1 dimer in the membrane (NS 1m) and cytosolic (NS 1c) fractions of C6/36 cells, respectively, was also recognized. Using individual patient's serum, it was further confirmed that all patients' sera contained antibodies that specifically recognized E, NS 1 and PrM present in the dengue 2 virus-infected cell membrane fractions, suggesting that these glycosylated virus proteins were the main antigenic proteins recognized in vivo. Detection of dengue 2 virus C antibody in some patients further suggested that C could be antigenic if presented in vivo.
    Matched MeSH terms: Antibodies, Viral/immunology*
  11. Rabu A, Tan WS, Kho CL, Omar AR, Yusoff K
    Acta Virol., 2002;46(4):211-7.
    PMID: 12693857
    The nucleocapsid (NP) protein of Newcastle disease virus (NDV) self-assembled in Escherichia coli as ring-like and herringbone-like particles. Several chimeric NP proteins were constructed in which the antigenic regions of the hemagglutinin-neuraminidase (HN) and fusion (F) proteins of NDV, myc epitope, and six histidines (a hexa-His tag) were linked to the C-terminus of the NP monomer. These chimeric proteins were expressed efficiently in soluble form in E. coli as detected by Western blot analysis. Electron microscopy of the purified products revealed that they self-assembled into ring-like particles. These chimeric particles exhibited antigenicity of the myc epitope, suggesting that the foreign sequences were exposed on the surface of the particles. Chickens inoculated with the chimeric particles mounted an immune response against NDV, suggesting the possibility of use of the ring-like particle as a carrier of immunogens in subunit vaccines and immunological reagents.
    Matched MeSH terms: Antibodies, Viral/immunology
  12. Eshaghi M, Tan WS, Ong ST, Yusoff K
    J Clin Microbiol, 2005 Jul;43(7):3172-7.
    PMID: 16000431
    The nucleocapsid (N) protein of Nipah virus (NiV) is a major constituent of the viral proteins which play a role in encapsidation, regulating the transcription and replication of the viral genome. To investigate the use of a fusion system to aid the purification of the recombinant N protein for structural studies and potential use as a diagnostic reagent, the NiV N gene was cloned into the pFastBacHT vector and the His-tagged fusion protein was expressed in Sf9 insect cells by recombinant baculovirus. Western blot analysis of the recombinant fusion protein with anti-NiV antibodies produced a band of approximately 62 kDa. A time course study showed that the highest level of expression was achieved after 3 days of incubation. Electron microscopic analysis of the NiV recombinant N fusion protein purified on a nickel-nitrilotriacetic acid resin column revealed different types of structures, including spherical, ring-like, and herringbone-like particles. The light-scattering measurements of the recombinant N protein also confirmed the polydispersity of the sample with hyrdrodynamic radii of small and large types. The optical density spectra of the purified recombinant fusion protein revealed a high A(260)/A(280) ratio, indicating the presence of nucleic acids. Western blotting and enzyme-linked immunosorbent assay results showed that the recombinant N protein exhibited the antigenic sites and conformation necessary for specific antigen-antibody recognition.
    Matched MeSH terms: Antibodies, Viral/immunology
  13. Ooi HL, Cheong SM, Yogeswery S, Norizah I, Zuridah H, Kumarasamy V, et al.
    Med J Malaysia, 2006 Jun;61(2):248-50.
    PMID: 16898324 MyJurnal
    An effective live attenuated rubella vaccine was available since 1969 and congenital rubella syndrome can be prevented with appropriate vaccination. We report a baby with congenital rubella syndrome born in Klang valley to indicate that the Universal Rubella Vaccination Programme adopted by the Ministry of Health Malaysia since 2002 has yet to achieve its effect of eliminating transmission of rubella and preventing congenital rubella infection in the community. To our knowledge, the virus isolate represents the first successful isolation of rubella virus in this country and will serve as the reference strain for future comparison in molecular epidemiological tracking of rubella virus activity this country.
    Matched MeSH terms: Antibodies, Viral/immunology*
  14. Tan GH, Yusoff K, Seow HF, Tan WS
    J Clin Virol, 2007 Jan;38(1):49-56.
    PMID: 17074533
    Phage display is an alternative method for constructing and selecting antibodies with desired specificity towards an antigen.
    Matched MeSH terms: Antibodies, Viral/immunology*
  15. Osman O, Fong MY, Devi S
    Jpn J Infect Dis, 2007 Jul;60(4):205-8.
    PMID: 17642533
    The purpose of this study was to examine the extent of dengue infection in Brunei and to determine the predominant serotype circulating in the country. The study generated useful epidemiological data on dengue infection in Brunei. A total of 271 samples from patients suspected of having dengue infections were selected and analyzed. All patients were seen in clinics and hospitals in Brunei. The samples were collected from April 2005 to April 2006 and transported to the WHO Collaborating Centre for Arbovirus Reference and Research, University of Malaya, Malaysia. The following tests were used to achieve the objectives: in-house IgM-capture enzyme-linked immunosorbent assay, virus isolation in mosquito albopictus cell line (C6/36), and viral RNA detection and serotyping by reverse transcriptase-polymerase chain reaction (RT-PCR). The results show that 45 people were positive for dengue-specific IgM (27 males and 18 females), while RT-PCR detected dengue viral RNA in 12 patients, 3 identified as DEN-1 and 9 as DEN-2. Dengue virus was isolated from 6 patients using the C6/36 cell line; 3 were DEN-2 isolates and 3 were DEN-1 isolates. These data show that dengue virus is circulating in Brunei and the predominant infecting serotype for that period was DEN-2 followed by DEN-1. This study is the first to report the detection and isolation of dengue virus from Brunei using RT-PCR and culture in the C6/36 albopictus mosquito cell line.
    Matched MeSH terms: Antibodies, Viral/immunology
  16. Khairul AH, Chem YK, Keniscope C, Rosli J, Hassan S, Mat J, et al.
    Malays J Pathol, 2010 Jun;32(1):49-52.
    PMID: 20614726 MyJurnal
    In the past decade, enterovirus 71 (EV71) and chikungunya (CHIK) virus have re-emerged periodically causing serious public health problems in Malaysia, since their first emergence in 1997 and 1998 respectively. This study demonstrates that CHIK virus causes similar patterns of cytopathic effect in cultured Vero cells as some enteroviruses. They also show positive cross-reaction on direct immunofluorescence staining using monoclonal antibodies meant for typing enteroviruses. Without adequate clinical and epidemiological information for correlation, CHIK virus isolated from patients with acute febrile rash can be wrongly reported as untypeable enterovirus due to its cross-reactivity with commercial pan-enterovirus monoclonal antibodies. This is due to the diagnostic laboratory being unaware of such cross-reactions as it has not been reported previously. Final identification of the virus could be determined with specific antibodies or molecular typing using specific oligonucleotide primers for the CHIK virus.
    Matched MeSH terms: Antibodies, Viral/immunology*
  17. Oveissi S, Omar AR, Yusoff K, Jahanshiri F, Hassan SS
    Comp Immunol Microbiol Infect Dis, 2010 Dec;33(6):491-503.
    PMID: 19781778 DOI: 10.1016/j.cimid.2009.08.004
    The H5 gene of avian influenza virus (AIV) strain A/chicken/Malaysia/5744/2004(H5N1) was cloned into pcDNA3.1 vector, and Esat-6 gene of Mycobacterium tuberculosis was fused into downstream of the H5 gene as a genetic adjuvant for DNA vaccine candidates. The antibody level against AIV was measured using enzyme-linked immunosorbent assay (ELISA) and haemagglutination inhibition (HI) test. Sera obtained from specific-pathogen-free chickens immunized with pcDNA3.1/H5 and pcDNA3.1/H5/Esat-6 demonstrated antibody responses as early as 2 weeks after the first immunization. Furthermore, the overall HI antibody titer in chickens immunized with pcDNA3.1/H5/Esat-6 was higher compared to the chickens immunized with pcDNA3.1/H5 (p<0.05). The results suggested that Esat-6 gene of M. tuberculosis is a potential genetic adjuvant for the development of effective H5 DNA vaccine in chickens.
    Matched MeSH terms: Antibodies, Viral/immunology
  18. Lim SH, Jahanshiri F, Jalilian FA, Rahim RA, Sekawi Z, Yusoff K
    Acta Virol., 2010;54(3):181-7.
    PMID: 20822310
    Human respiratory syncytial virus (HRSV) is a leading pathogen causing lower respiratory tract infections in infants and young children worldwide. In line with the development of an effective vaccine against HRSV, a domain of the fusion (F) glycoprotein of HRSV was produced and its immunogenicity and antigenic properties, namely the effect of deficient glycosylation was examined. A His-tagged recombinant F (rF) protein was expressed in Escherichia coli, solubilized with 8 mol/l urea, purified by the Ni-NTA affinity chromatography and used for the raising of a polyclonal antibody in rabbits. The non-glycosylated rF protein proved to be a strong immunogen that induced a polyclonal antibody that was able to recognize also the glycosylated F1 subunit of native HRSV. The other way around, a polyclonal antibody prepared against the native HRSV was able to react with the rF protein. These results indicated that glycosylation was not necessary for the F domain aa 212-574 in order to be recognized by the specific polyclonal antibody.
    Matched MeSH terms: Antibodies, Viral/immunology*
  19. Ch'ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N
    J Med Virol, 2011 Oct;83(10):1783-91.
    PMID: 21837796 DOI: 10.1002/jmv.22198
    Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
    Matched MeSH terms: Antibodies, Viral/immunology
  20. Gravitt PE
    J Clin Invest, 2011 Dec;121(12):4593-9.
    PMID: 22133884 DOI: 10.1172/JCI57149
    The discovery that certain high-risk strains of human papillomavirus (HR-HPV) cause nearly 100% of invasive cervical cancer has spurred a revolution in cervical cancer prevention by promoting the development of viral vaccines. Although the efficacy of these vaccines has already been demonstrated, a complete understanding of viral latency and natural immunity is lacking, and solving these mysteries could help guide policies of cervical cancer screening and vaccine use. Here, we examine the epidemiological and biological understanding of the natural history of HPV infection, with an eye toward using these studies to guide the implementation of cervical cancer prevention strategies.
    Matched MeSH terms: Antibodies, Viral/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links