CASE PRESENTATION: A previously healthy 7-month old infant presented initially with fever, cough and coryza, and subsequently developed Koplik's spots followed by a typical morbilliform skin rash. There was significant contact history with a household relative who had recently been diagnosed with measles. On examination, a 2.5 cm area of erythema and induration was seen at the previous BCG inoculation site, in addition to the widespread maculopapular rash. No other clinical features of KD were present. Measles virus was isolated from the throat swab and measles antibodies (IgM) were present in the serum. The patient recovered completely with oral vitamin A and supportive therapy, and had normal echocardiography examination on follow up.
CONCLUSIONS: This case report highlights the rare finding of BCG reactivation in a child with confirmed measles infection, and suggests that this clinical manifestation may occasionally occur in children with infections or conditions other than KD.
METHODOLOGY: The present study was carried out to determine the role of TLR-4 on eliciting the immunomodulatory effects of recombinant BCG expressing MSP-1C of Plasmodium falciparum leading to the production of NO and IL-10, as well as the expression of iNOS. Six groups of mice (n = 6 per group) were immunised thrice, three weeks apart with intraperitoneal phosphate buffered saline T80 (PBS-T80), BCG or rBCG in the presence or absence of a TLR-4 inhibitor; TAK-242, given one hour prior to each immunisation. Peritoneal macrophages were harvested from the mice and cultured for the determination of NO, iNOS and IL-10 via Griess assay, ELISA and Western blot respectively.
RESULTS: The results showed significant inhibition of the production of NO and IL-10 and the expression of iNOS in all groups of mice in the presence of TAK-242.
CONCLUSIONS: These results presented evidence of the role of TLR-4/rBCG attachment mechanism in modulating the production of NO and IL-10 and the expression of iNOS in response to our rBCG-based malaria vaccine candidate expressing MSP-1C of P. falciparum.