Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Lum LC, Wong KT, Lam SK, Chua KB, Goh AY
    Lancet, 2000 Jan 08;355(9198):146-7.
    PMID: 10675193
    Matched MeSH terms: Brain/virology
  2. Jha NK, Sharma A, Jha SK, Ojha S, Chellappan DK, Gupta G, et al.
    Open Biol, 2020 Dec;10(12):200286.
    PMID: 33352062 DOI: 10.1098/rsob.200286
    Excessive exposure to toxic substances or chemicals in the environment and various pathogens, including viruses and bacteria, is associated with the onset of numerous brain abnormalities. Among them, pathogens, specifically viruses, elicit persistent inflammation that plays a major role in Alzheimer's disease (AD) as well as dementia. AD is the most common brain disorder that affects thought, speech, memory and ability to execute daily routines. It is also manifested by progressive synaptic impairment and neurodegeneration, which eventually leads to dementia following the accumulation of Aβ and hyperphosphorylated Tau. Numerous factors contribute to the pathogenesis of AD, including neuroinflammation associated with pathogens, and specifically viruses. The human immunodeficiency virus (HIV) is often linked with HIV-associated neurocognitive disorders (HAND) following permeation through the blood-brain barrier (BBB) and induction of persistent neuroinflammation. Further, HIV infections also exhibited the ability to modulate numerous AD-associated factors such as BBB regulators, members of stress-related pathways as well as the amyloid and Tau pathways that lead to the formation of amyloid plaques or neurofibrillary tangles accumulation. Studies regarding the role of HIV in HAND and AD are still in infancy, and potential link or mechanism between both is not yet established. Thus, in the present article, we attempt to discuss various molecular mechanisms that contribute to the basic understanding of the role of HIV-associated neuroinflammation in AD and HAND. Further, using numerous growth factors and drugs, we also present possible therapeutic strategies to curb the neuroinflammatory changes and its associated sequels.
    Matched MeSH terms: Brain/virology
  3. Cardosa MJ, Wang SM, Sum MS, Tio PH
    BMC Microbiol, 2002 May 5;2:9.
    PMID: 12019028
    In Southeast Asia, dengue viruses often co-circulate with other flaviviruses such as Japanese encephalitis virus, and due to the presence of shared antigenic epitopes it is often difficult to use serological methods to distinguish between previous infections by these flaviviruses.
    Matched MeSH terms: Brain/virology
  4. Dietmann A, Putzer D, Beer R, Helbok R, Pfausler B, Nordin AJ, et al.
    Int J Infect Dis, 2016 Oct;51:73-77.
    PMID: 27418580 DOI: 10.1016/j.ijid.2016.06.022
    BACKGROUND: Tick borne encephalitis (TBE) is an acute meningoencephalitis with or without myelitis caused by an RNA virus from the flavivirus family transmitted by Ixodes spp ticks. The neurotropic TBE virus infects preferentially large neurons in basal ganglia, anterior horns, medulla oblongata, Purkinje cells and thalamus. Brain metabolic changes related to radiologic and clinical findings have not been described so far.

    METHODS: Here we describe the clinical course of 10 consecutive TBE patients with outcome assessment at discharge and after 12 month using a modified Rankin Scale. Patients underwent cerebral MRI after confirmation of diagnosis and before discharge. (18)F-FDG PET/CT scans were performed within day 5 to day 14 after TBE diagnosis. Extended analysis of coagulation parameters by thrombelastometry (ROTEM® InTEM, ExTEM, FibTEM) was performed every other day after confirmation of TBE diagnosis up to day 10 after hospital admission or discharge.

    RESULTS: All patients presented with a meningoencephalitic course of disease. Cerebral MRI scans showed unspecific findings at predilection areas in 3 patients. (18)F-FDG PET/CT showed increased glucose utilization in one patient and decreased (18)F-FDG uptake in seven patients. Changes in coagulation measured by standard parameters and thrombelastometry were not found in any of the patients.

    DISCUSSION: Glucose hypometabolism was present in 7 out of 10 TBE patients reflecting neuronal dysfunction in predilection areas of TBE virus infiltration responsible for development of clinical signs and symptoms.

    Matched MeSH terms: Brain/virology
  5. Tee HK, Tan CW, Yogarajah T, Lee MHP, Chai HJ, Hanapi NA, et al.
    PLoS Pathog, 2019 11;15(11):e1007863.
    PMID: 31730673 DOI: 10.1371/journal.ppat.1007863
    Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71.
    Matched MeSH terms: Brain/virology*
  6. Goldsmith CS, Whistler T, Rollin PE, Ksiazek TG, Rota PA, Bellini WJ, et al.
    Virus Res, 2003 Mar;92(1):89-98.
    PMID: 12606080
    Nipah virus, which was first recognized during an outbreak of encephalitis with high mortality in Peninsular Malaysia during 1998-1999, is most closely related to Hendra virus, another emergent paramyxovirus first recognized in Australia in 1994. We have studied the morphologic features of Nipah virus in infected Vero E6 cells and human brain by using standard and immunogold electron microscopy and ultrastructural in situ hybridization. Nipah virions are enveloped particles composed of a tangle of filamentous nucleocapsids and measured as large as 1900 nm in diameter. The nucleocapsids measured up to 1.67 microm in length and had the herringbone structure characteristic for paramyxoviruses. Cellular infection was associated with multinucleation, intracytoplasmic nucleocapsid inclusions (NCIs), and long cytoplasmic tubules. Previously undescribed for other members of the family Paramyxoviridae, infected cells also contained an inclusion formed of reticular structures. Ultrastructural ISH studies suggest these inclusions play an important role in the transcription process.
    Matched MeSH terms: Brain/virology
  7. Camalxaman SN, Zeenathul NA, Quah YW, Loh HS, Zuridah H, Hani H, et al.
    In Vitro Cell Dev Biol Anim, 2013 Mar;49(3):238-44.
    PMID: 23435855 DOI: 10.1007/s11626-012-9553-5
    Endothelial cells have been implicated as key cells in promoting the pathogenesis and spread of cytomegalovirus (CMV) infection. This study describes the isolation and culture of rat brain endothelial cells (RBEC) and further evaluates the infectious potential of a Malaysian rat CMV (RCMV ALL-03) in these cultured cells. Brain tissues were mechanically fragmented, exposed to enzymatic digestion, purified by gradient density centrifugation, and cultured in vitro. Morphological characteristics and expression of von Willebrand factor (factor VIII-related antigen) verified the cells were of endothelial origin. RBEC were found to be permissive to the virus by cytopathic effects with detectable plaques formed within 7 d of infection. This was confirmed by electron microscopy examination which proved the existence of the viral particles in the infected cells. The susceptibility of the virus to these target cells under the experimental conditions described in this report provides a platform for developing a cell-culture-based experimental model for studies of RCMV pathogenesis and allows stimulation of further studies on host cell responses imposed by congenital viral infections.
    Matched MeSH terms: Brain/virology
  8. Setoh YX, Peng NY, Nakayama E, Amarilla AA, Prow NA, Suhrbier A, et al.
    Viruses, 2018 10 03;10(10).
    PMID: 30282919 DOI: 10.3390/v10100541
    The recent emergence of Zika virus (ZIKV) in Brazil was associated with an increased number of fetal brain infections that resulted in a spectrum of congenital neurological complications known as congenital Zika syndrome (CZS). Herein, we generated de novo from sequence data an early Asian lineage ZIKV isolate (ZIKV-MY; Malaysia, 1966) not associated with microcephaly and compared the in vitro replication kinetics and fetal brain infection in interferon α/β receptor 1 knockout (IFNAR1-/-) dams of this isolate and of a Brazilian isolate (ZIKV-Natal; Natal, 2015) unequivocally associated with microcephaly. The replication efficiencies of ZIKV-MY and ZIKV-Natal in A549 and Vero cells were similar, while ZIKV-MY replicated more efficiently in wild-type (WT) and IFNAR-/- mouse embryonic fibroblasts. Viremias in IFNAR1-/- dams were similar after infection with ZIKV-MY or ZIKV-Natal, and importantly, infection of fetal brains was also not significantly different. Thus, fetal brain infection does not appear to be a unique feature of Brazilian ZIKV isolates.
    Matched MeSH terms: Brain/virology*
  9. Zhang YZ, Xiong CL, Lin XD, Zhou DJ, Jiang RJ, Xiao QY, et al.
    Infect Genet Evol, 2009 Jan;9(1):87-96.
    PMID: 19041424 DOI: 10.1016/j.meegid.2008.10.014
    There have been three major rabies epidemics in China since the 1950s. To gain more insights into the molecular epidemiology of rabies viruses (RVs) for the third (the current) epidemic, we isolated RV from dogs and humans in major endemic areas, and characterized these isolates genetically by sequencing the entire glycoprotein (G) gene and the G-L non-coding region. These sequences were also compared phylogenetically with RVs isolated in China during previous epidemics and those around the world. Comparison of the entire G genes among the Chinese isolates revealed up to 21.8% divergence at the nucleotide level and 17.8% at the amino acid level. The available Chinese isolates could be divided into two distinct clades, each of which could be further divided into six lineages. Viruses in clade I include most of the Chinese viruses as well as viruses from southeast Asian countries including Indonesia, Malaysia, the Philippines, Thailand, and Vietnam. The viruses in the other clade were found infrequently in China, but are closely related to viruses distributed worldwide among terrestrial animals. Interestingly, most of the viruses isolated during the past 10 years belong to lineage A viruses within clade I whereas most of the viruses isolated before 1996 belong to other lineages within clades I and II. Our results indicated that lineages A viruses have been predominant during the past 10 years and thus are largely responsible for the third and the current epidemic in China. Our results also suggested that the Chinese RV isolates in clade I share a common recent ancestor with those circulating in southeast Asia.
    Matched MeSH terms: Brain/virology
  10. Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, et al.
    Virology, 1995 Jan 10;206(1):49-56.
    PMID: 7530394
    Previous studies have found Kunjin (KUN) virus isolates from within Australia to be genetically homogenous and that the envelope protein of the type strain (MRM61C) was unglycosylated and lacked a potential glycosylation site. We investigated the extent of antigenic variation between KUN virus isolates from Australia and Sarawak using an immunoperoxidase assay and a panel of six monoclonal antibodies. The glycosylation status of the E protein of each virus was also determined by N glycosidase F (PNGase F) digestion and limited sequence analysis. The results showed that KUN viruses isolated within Australia oscillated between three antigenic types defined by two epitopes whose expression was influenced by passage history and host cell type. In contrast an isolate from Sarawak formed a stable antigenic type that was not influenced by passage history and was distinct from all Australian isolates. PNGase F digestions of KUN isolates indicated that 19 of the 33 viruses possessed a glycosylated E protein. Nucleotide sequence of the 5' third of the E gene of selected KUN isolates revealed that a single base change in PNGase F sensitive strains changed the tripeptide N-Y-F (amino acids 154-156 of the published sequence) to the potential glycosylation site N-Y-S. Further analysis revealed that passage history also had a significant influence on glycosylation.
    Matched MeSH terms: Brain/virology
  11. Abdullah S, Tan CT
    Handb Clin Neurol, 2014;123:663-70.
    PMID: 25015510 DOI: 10.1016/B978-0-444-53488-0.00032-8
    Matched MeSH terms: Brain/virology
  12. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD
    J Gen Virol, 2017 Dec;98(12):2993-3007.
    PMID: 29182510 DOI: 10.1099/jgv.0.000981
    Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
    Matched MeSH terms: Brain/virology
  13. Leon AJ, Borisevich V, Boroumand N, Seymour R, Nusbaum R, Escaffre O, et al.
    PLoS Negl Trop Dis, 2018 03;12(3):e0006343.
    PMID: 29538374 DOI: 10.1371/journal.pntd.0006343
    Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.
    Matched MeSH terms: Brain/virology
  14. Wong KT, Robertson T, Ong BB, Chong JW, Yaiw KC, Wang LF, et al.
    Neuropathol. Appl. Neurobiol., 2009 Jun;35(3):296-305.
    PMID: 19473296 DOI: 10.1111/j.1365-2990.2008.00991.x
    To study the pathology of two cases of human Hendra virus infection, one with no clinical encephalitis and one with relapsing encephalitis.
    Matched MeSH terms: Brain/virology
  15. Chan YF, AbuBakar S
    Virol J, 2005;2:74.
    PMID: 16122396
    At least three different EV-71 subgenotypes were identified from an outbreak in Malaysia in 1998. The subgenotypes C2 and B4 were associated with the severe and fatal infections, whereas the B3 virus was associated with mild to subclinical infections. The B3 virus genome sequences had >= 85% similarity at the 3' end to CV-A16. This offers opportunities to examine if there are characteristic similarities and differences in virulence between CV-A16, EV-71 B3 and EV-71 B4 and to determine if the presence of the CV-A16-liked genes in EV-71 B3 would also confer the virus with a CV-A16-liked neurovirulence in mice model infection.
    Matched MeSH terms: Brain/virology
  16. Pletnev AG
    Virology, 2001 Apr 10;282(2):288-300.
    PMID: 11289811
    Forty-five years ago a naturally attenuated tick-borne flavivirus, Langat (LGT) strain TP21, was recovered from ticks in Malaysia. Subsequently, it was tested as a live attenuated vaccine for virulent tick-borne encephalitis viruses. In a large clinical trial its attenuation was confirmed but there was evidence of a low level of residual virulence. Thirty-five years ago further attenuation of LGT TP21 was achieved by multiple passages in eggs to yield mutant E5. To study the genetic determinants of the further attenuation exhibited by E5 and to allow us to manipulate the genome of this virus for the purpose of developing a satisfactory live attenuated tick-borne flavivirus vaccine, we recovered infectious E5 virus from a full-length cDNA clone. The recombinant E5 virus (clone 651) recovered from a full-length infectious cDNA clone was more attenuated in immunodeficient mice than that of its biologically derived E5 parent. Increase in attenuation was associated with three amino acid substitutions, two located in the structural protein E and one in nonstructural protein NS4B. Subsequently an even greater degree of attenuation was achieved by creating a viable 320 nucleotide deletion in the 3'-noncoding region of infectious full-length E5 cDNA. This deletion mutant was not cytopathic in simian Vero cells and it replicated to lower titer than its E5-651 parent. In addition, the E5 3' deletion mutant was less neuroinvasive in SCID mice than its E5-651 parent. Significantly, the deletion mutant proved to be 119,750 times less neuroinvasive in SCID mice than its progenitor, LGT strain TP21. Despite its high level of attenuation, the E5 3' deletion mutant remained highly immunogenic and intraperitoneal (ip) inoculation of 10 PFU induced complete protection in Swiss mice against subsequent challenge with 2000 ip LD50 of the wild-type LGT TP21.
    Matched MeSH terms: Brain/virology*
  17. Fu TL, Ong KC, Tan SH, Wong KT
    J. Neuropathol. Exp. Neurol., 2019 12 01;78(12):1160-1170.
    PMID: 31675093 DOI: 10.1093/jnen/nlz103
    Japanese encephalitis (JE) is a known CNS viral infection that often involves the thalamus early. To investigate the possible role of sensory peripheral nervous system (PNS) in early neuroinvasion, we developed a left hindlimb footpad-inoculation mouse model to recapitulate human infection by a mosquito bite. A 1-5 days postinfection (dpi) study, demonstrated focal viral antigens/RNA in contralateral thalamic neurons at 3 dpi in 50% of the animals. From 4 to 5 dpi, gradual increase in viral antigens/RNA was observed in bilateral thalami, somatosensory, and piriform cortices, and then the entire CNS. Infection of neuronal bodies and adjacent nerves in dorsal root ganglia (DRGs), trigeminal ganglia, and autonomic ganglia (intestine, etc.) was also observed from 5 dpi. Infection of explant organotypic whole brain slice cultures demonstrated no viral predilection for the thalamus, while DRG and intestinal ganglia organotypic cultures confirmed sensory and autonomic ganglia susceptibility to infection, respectively. Early thalamus and sensory-associated cortex involvement suggest an important role for sensory pathways in neuroinvasion. Our results suggest that JE virus neuronotropism is much more extensive than previously known, and that the sensory PNS and autonomic system are susceptible to infection.
    Matched MeSH terms: Brain/virology*
  18. Al-Obaidi MMJ, Bahadoran A, Har LS, Mui WS, Rajarajeswaran J, Zandi K, et al.
    Virus Res, 2017 04 02;233:17-28.
    PMID: 28279803 DOI: 10.1016/j.virusres.2017.02.012
    Japanese encephalitis (JE) is a neurotropic flavivirus that causes inflammation in central nervous system (CNS), neuronal death and also compromises the structural and functional integrity of the blood-brain barrier (BBB). The aim of this study was to evaluate the BBB disruption and apoptotic process in Japanese encephalitis virus (JEV)-infected transfected human brain microvascular endothelial cells (THBMECs). THBMECs were overlaid by JEV with different MOIs (0.5, 1.0, 5.0 and 10.0) and monitored by electrical cell-substrate impedance sensing (ECIS) in a real-time manner in order to observe the barrier function of THBMECs. Additionally, the level of 43 apoptotic proteins was quantified in the virally infected cells with different MOIs at 24h post infection. Infection of THBMEC with JEV induced an acute reduction in transendothelial electrical resistance (TEER) after viral infection. Also, significant up-regulation of Bax, BID, Fas and Fasl and down-regulation of IGFBP-2, BID, p27 and p53 were observed in JEV infected THBMECs with 0.5 and 10 MOIs compared to uninfected cells. Hence, the permeability of THBMECs is compromised during the JEV infection. In addition high viral load of the virus has the potential to subvert the host cell apoptosis to optimize the course of viral infection through deactivation of pro-apoptotic proteins.
    Matched MeSH terms: Brain/virology
  19. Cong Y, Lentz MR, Lara A, Alexander I, Bartos C, Bohannon JK, et al.
    PLoS Negl Trop Dis, 2017 04;11(4):e0005532.
    PMID: 28388650 DOI: 10.1371/journal.pntd.0005532
    Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that emerged in the late 1990s in Malaysia and has since been identified as the cause of sporadic outbreaks of severe febrile disease in Bangladesh and India. NiV infection is frequently associated with severe respiratory or neurological disease in infected humans with transmission to humans through inhalation, contact or consumption of NiV contaminated foods. In the work presented here, the development of disease was investigated in the African Green Monkey (AGM) model following intratracheal (IT) and, for the first time, small-particle aerosol administration of NiV. This study utilized computed tomography (CT) and magnetic resonance imaging (MRI) to temporally assess disease progression. The host immune response and changes in immune cell populations over the course of disease were also evaluated. This study found that IT and small-particle administration of NiV caused similar disease progression, but that IT inoculation induced significant congestion in the lungs while disease following small-particle aerosol inoculation was largely confined to the lower respiratory tract. Quantitative assessment of changes in lung volume found up to a 45% loss in IT inoculated animals. None of the subjects in this study developed overt neurological disease, a finding that was supported by MRI analysis. The development of neutralizing antibodies was not apparent over the 8-10 day course of disease, but changes in cytokine response in all animals and activated CD8+ T cell numbers suggest the onset of cell-mediated immunity. These studies demonstrate that IT and small-particle aerosol infection with NiV in the AGM model leads to a severe respiratory disease devoid of neurological indications. This work also suggests that extending the disease course or minimizing the impact of the respiratory component is critical to developing a model that has a neurological component and more accurately reflects the human condition.
    Matched MeSH terms: Brain/virology
  20. Ransangan J, Manin BO
    Vet Microbiol, 2010 Sep 28;145(1-2):153-7.
    PMID: 20427132 DOI: 10.1016/j.vetmic.2010.03.016
    Culture of Asian seabass, Lates calcarifer (Bloch) is a popular aquaculture activity in Malaysia. This fish is in high demand and fetches a good price in the local market. The seed for this fish is commercially produced by induced spawning in hatcheries. However, the seed supply is affected by frequent mass mortality of larvae aged between 15 and 60 dph. The clinical signs shown by the affected larvae include lethargy, loss of appetite, uncoordinated swimming, unusual spiral movement pattern and dark coloration. Histological examination of brain and eye of the affected specimens revealed extensive cell vacuolation in larvae aged 15-25 dph. Partial nucleotide sequence of the nervous necrosis virus coat protein gene of the affected larvae showed 94.0-96.1% homology to the nucleotide sequences of coat protein gene from nervous necrosis virus isolated from other countries in the Southeast Asia and Australia. This study provides scientific evidence based on molecular technique that many episodes of mass mortality in seabass larvae in Sabah is associated with the viral nervous necrosis. Because no effective treatment has been reported for this infection, stringent biosecurity measures must be adopted for exclusion of the pathogen from the culture system.
    Matched MeSH terms: Brain/virology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links