Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Jamion NA, Lee KE, Mokhtar M, Goh TL
    Environ Sci Pollut Res Int, 2024 Mar;31(11):16291-16308.
    PMID: 38315340 DOI: 10.1007/s11356-024-32140-4
    Ex-mining lake-converted constructed wetlands play a significant role in the carbon cycle, offering a great potential to sequester carbon and mitigate climate change and global warming. Investigating the quantity of carbon storage capacity of ex-mining lake-converted constructed wetlands provides information and justification for restoration and conservation efforts. The present study aims to quantify the carbon pool of the ex-mining lake-converted constructed wetlands and characterise the physicochemical properties of the soil and sediment. Pearson's correlation and a one-way ANOVA were performed to compare the different sampling stations at Paya Indah Wetland, Selangor, Malaysia. An analysis of 23 years of ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia, revealed that the estimated total carbon pool in soil and sediment accumulated to 1553.11 Mg C ha-1 (equivalent to 5700 Mg CO2 ha-1), which translates to an annual carbon sink capacity of around 67.5 Mg C ha-1 year-1. The characterisation showed that the texture of all soil samples was dominated by silt, whereas sediments exhibited texture heterogeneity. Although the pH of the soil and sediment was both acidic, the bulk density was still optimal for plant growth and did not affect root growth. FT-IR and WDXRF results supported that besides the accumulation and degradation of organic substances, which increase the soil and sediment carbon content, mineral carbonation is a mechanism by which soil and sediment can store carbon. Therefore, this study indicates that the ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia have a significant carbon storage potential.
    Matched MeSH terms: Carbon/analysis
  2. Thamizharasan A, Rajaguru VRR, Gajalakshmi S, Lim JW, Greff B, Rajagopal R, et al.
    Environ Res, 2024 Feb 15;243:117752.
    PMID: 38008202 DOI: 10.1016/j.envres.2023.117752
    Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).
    Matched MeSH terms: Carbon/analysis
  3. Mahmud K, Weitz H, H Kritzler U, Burslem DFRP
    PLoS One, 2024;19(3):e0297686.
    PMID: 38507439 DOI: 10.1371/journal.pone.0297686
    Aluminium (Al) is toxic to most plants, but recent research has suggested that Al addition may stimulate growth and nutrient uptake in some species capable of accumulating high tissue Al concentrations. The physiological basis of this growth response is unknown, but it may be associated with processes linked to the regulation of carbon assimilation and partitioning by Al supply. To test alternative hypotheses for the physiological mechanism explaining this response, we examined the effects of increasing Al concentrations in the growth medium on tissue nutrient concentrations and carbon assimilation in two populations of the Al-accumulator Melastoma malabathricum. Compared to seedlings grown in a control nutrient solution containing no Al, mean rates of photosynthesis and respiration increased by 46% and 27%, respectively, total non-structural carbohydrate concentrations increased by 45%, and lignin concentration in roots decreased by 26% when seedlings were grown in a nutrient solution containing 2.0 mM Al. The concentrations of P, Ca and Mg in leaves and stems increased by 31%, 22%, and 26%, respectively, in response to an increase in nutrient solution Al concentration from 0 to 2.0 mM. Elemental concentrations in roots increased for P (114%), Mg (61%) and K (5%) in response to this increase in Al concentration in the nutrient solution. Plants derived from an inherently faster-growing population had a greater relative increase in final dry mass, net photosynthetic and respiration rates and total non-structural carbohydrate concentrations in response to higher external Al supply. We conclude that growth stimulation by Al supply is associated with increases in photosynthetic and respiration rates and enhanced production of non-structural carbohydrates that are differentially allocated to roots, as well as stimulation of nutrient uptake. These responses suggest that internal carbon assimilation is up-regulated to provide the necessary resources of non-structural carbohydrates for uptake, transport and storage of Al in Melastoma malabathricum. This physiological mechanism has only been recorded previously in one other plant species, Camellia sinensis, which last shared a common ancestor with M. malabathricum more than 120 million years ago.
    Matched MeSH terms: Carbon/analysis
  4. Pandion K, Dowlath MJH, Arunachalam KD, Abd-Elkader OH, Yadav KK, Nazir N, et al.
    Environ Res, 2023 Oct 15;235:116611.
    PMID: 37437863 DOI: 10.1016/j.envres.2023.116611
    The current study aims to investigate the influence of seasonal changes on the pollution loads of the sediment of a coastal area in terms of its physicochemical features. The research will focus on analyzing the nutrients, organic carbon and particle size of the sediment samples collected from 12 different sampling stations in 3 different seasons along the coastal area. Additionally, the study discusses about the impact of anthropogenic activities such as agriculture and urbanization and natural activities such as monsoon on the sediment quality of the coastal area. The nutrient changes in the sediment were found to be: pH (7.96-9.45), EC (2.89-5.23 dS/m), nitrogen (23.98-57.23 mg/kg), phosphorus (7.75-11.36 mg/kg), potassium (217-398 mg/kg), overall organic carbon (0.35-0.99%), and sediment proportions (8.91-9.3%). Several statistical methods were used to investigate changes in sediment quality. According to the three-way ANOVA test, the mean value of the sediments differs significantly with each season. It correlates significantly with principal factor analysis and cluster analysis across seasons, implying contamination from both natural and man-made sources. This study will contribute to developing effective management strategies for the protection and restoration of degraded coastal ecosystem.
    Matched MeSH terms: Carbon/analysis
  5. McCalmont J, Kho LK, Teh YA, Chocholek M, Rumpang E, Rowland L, et al.
    Sci Total Environ, 2023 Feb 01;858(Pt 1):159356.
    PMID: 36270353 DOI: 10.1016/j.scitotenv.2022.159356
    While existing moratoria in Indonesia and Malaysia should preclude continued large-scale expansion of palm oil production into new areas of South-East Asian tropical peatland, existing plantations in the region remain a globally significant source of atmospheric carbon due to drainage driven decomposition of peatland soils. Previous studies have made clear the direct link between drainage depth and peat carbon decomposition and significant reductions in the emission rate of CO2 can be made by raising water tables nearer to the soil surface. However, the impact of such changes on palm fruit yield is not well understood and will be a critical consideration for plantation managers. Here we take advantage of very high frequency, long-term monitoring of canopy-scale carbon exchange at a mature oil palm plantation in Malaysian Borneo to investigate the relationship between drainage level and photosynthetic uptake and consider the confounding effects of light quality and atmospheric vapour pressure deficit. Canopy modelling from our dataset demonstrated that palms were exerting significantly greater stomatal control at deeper water table depths (WTD) and the optimum WTD for photosynthesis was found to be between 0.3 and 0.4 m below the soil surface. Raising WTD to this level, from the industry typical drainage level of 0.6 m, could increase photosynthetic uptake by 3.6 % and reduce soil surface emission of CO2 by 11 %. Our study site further showed that despite being poorly drained compared to other planting blocks at the same plantation, monthly fruit bunch yield was, on average, 14 % greater. While these results are encouraging, and at least suggest that raising WTD closer to the soil surface to reduce emissions is unlikely to produce significant yield penalties, our results are limited to a single study site and more work is urgently needed to confirm these results at other plantations.
    Matched MeSH terms: Carbon/analysis
  6. Rahman MA, Ahmad R, Ismail I
    Environ Sci Pollut Res Int, 2023 Feb;30(6):15689-15707.
    PMID: 36173521 DOI: 10.1007/s11356-022-23189-0
    This study measures the impact of the implementation of the Regional Greenhouse Gas Initiative (RGGI) on firms' green innovation initiatives. We used 20 years of panel data from the Fortune 500 list of the US largest companies. Based on DID, a benchmark regression, the RGGI has a significant adverse effect on the green innovation of Fortune 500 companies, and we verified these findings with multiple robustness tests. As we investigate how energy-intensive industries were affected by RGGI, we found that it slowed down green innovation, but it was not statistically significant. This study provides a novel perspective on how the RGGI influences green innovation in firms and how different types of sectors respond to the policy. The findings indicate that the "weak" Porter Hypothesis has not been confirmed in the present carbon trading market (particularly the RGGI) for Fortune 500 firms in the USA. In terms of policy, we believe that a well-covered and differentiated legislation that fosters green innovation while being realistic about the policy's goal and the firm's environmental attitude, like emissions reduction through green innovation, is essential.
    Matched MeSH terms: Carbon/analysis
  7. Brown C, Boyd DS, Sjögersten S, Vane CH
    PLoS One, 2023;18(3):e0280187.
    PMID: 36989287 DOI: 10.1371/journal.pone.0280187
    Tropical peatlands are important carbon stores that are vulnerable to drainage and conversion to agriculture. Protection and restoration of peatlands are increasingly recognised as key nature based solutions that can be implemented as part of climate change mitigation. Identification of peatland areas that are important for protection and restauration with regards to the state of their carbon stocks, are therefore vital for policy makers. In this paper we combined organic geochemical analysis by Rock-Eval (6) pyrolysis of peat collected from sites with different land management history and optical remote sensing products to assess if remotely sensed data could be used to predict peat conditions and carbon storage. The study used the North Selangor Peat Swamp forest, Malaysia, as the model system. Across the sampling sites the carbon stocks in the below ground peat was ca 12 times higher than the forest (median carbon stock held in ground vegetation 114.70 Mg ha-1 and peat soil 1401.51 Mg ha-1). Peat core sub-samples and litter collected from Fire Affected, Disturbed Forest, and Managed Recovery locations (i.e. disturbed sites) had different decomposition profiles than Central Forest sites. The Rock-Eval pyrolysis of the upper peat profiles showed that surface peat layers at Fire Affected, Disturbed Forest, and Managed Recovery locations had lower immature organic matter index (I-index) values (average I-index range in upper section 0.15 to -0.06) and higher refractory organic matter index (R -index) (average R-index range in upper section 0.51 to 0.65) compared to Central Forest sites indicating enhanced decomposition of the surface peat. In the top 50 cm section of the peat profile, carbon stocks were negatively related to the normalised burns ratio (NBR) (a satellite derived parameter) (Spearman's rho = -0.664, S = 366, p-value = <0.05) while there was a positive relationship between the hydrogen index and the normalised burns ratio profile (Spearman's rho = 0.7, S = 66, p-value = <0.05) suggesting that this remotely sensed product is able to detect degradation of peat in the upper peat profile. We conclude that the NBR can be used to identify degraded peatland areas and to support identification of areas for conversation and restoration.
    Matched MeSH terms: Carbon/analysis
  8. Pandion K, Arunachalam KD, Dowlath MJH, Chinnapan S, Chang SW, Chang W, et al.
    Environ Monit Assess, 2022 Nov 19;195(1):126.
    PMID: 36401680 DOI: 10.1007/s10661-022-10568-w
    The current study focused on the monitoring of pollution loads in the Kalpakkam coastal zone of India in terms of physico-chemical characteristics of sediment. The investigation took place at 12 sampling points around the Kalpakkam coastal zone for one year beginning from 2019. The seasonal change of nutrients in the sediment, such as nitrogen, phosphorus, potassium, total organic carbon, and particles size distribution, was calculated. Throughout the study period, the pH (7.55 to 8.99), EC (0.99 to 4.98 dS/m), nitrogen (21.74 to 58.12 kg/ha), phosphorus (7.5 to 12.9 kg/ha), potassium (218 to 399 kg/ha), total organic carbon (0.11 to 0.88%), and particle size cumulative percent of sediments (from 9.01 to 9.39%) was observed. A number of multivariate statistical techniques were used to examine the changes in sediment quality. The population means were substantially different according to the three-way ANOVA test at the 0.05 level. Principal component analysis and cluster analysis showed a substantial association with all indicators throughout all seasons, implying contamination from both natural and anthropogenic causes. The ecosystem of the Kalpakkam coastal zone has been affected by nutrient contamination.
    Matched MeSH terms: Carbon/analysis
  9. Vaezzadeh V, Yi X, Rais FR, Bong CW, Thomes MW, Lee CW, et al.
    Mar Pollut Bull, 2021 Nov;172:112871.
    PMID: 34428623 DOI: 10.1016/j.marpolbul.2021.112871
    Concentrations, sources and interactions between black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were investigated in 42 sediment samples collected from riverine, coastal and shelf areas in Peninsular Malaysia. The concentrations of BC measured by benzene polycarboxylic acid (BPCA) method and PAHs showed broad spatial variations between the relatively pristine environment of the East coast and developed environment of the West and South coast ranging from 0.02 to 0.36% dw and 57.7 ng g-1 dw to 19,300 ng g-1 dw, respectively. Among diagnostic ratios of PAHs, the ratios of Ant/(Ant+Phe) and LMW/HMW drew the clearest distinctions between the East coast versus the West and South coast sediments indicating the predominance of petrogenic sources in the former versus pyrogenic sources in the latter. PAHs significantly correlated with BC and total organic carbon (TOC) in the sediments (p 
    Matched MeSH terms: Carbon/analysis
  10. Stankovic M, Ambo-Rappe R, Carly F, Dangan-Galon F, Fortes MD, Hossain MS, et al.
    Sci Total Environ, 2021 Aug 20;783:146858.
    PMID: 34088119 DOI: 10.1016/j.scitotenv.2021.146858
    Seagrasses have the ability to contribute towards climate change mitigation, through large organic carbon (Corg) sinks within their ecosystems. Although the importance of blue carbon within these ecosystems has been addressed in some countries of Southeast Asia, the regional and national inventories with the application of nature-based solutions are lacking. In this study, we aim to estimate national coastal blue carbon stocks in the seagrass ecosystems in the countries of Southeast Asia including the Andaman and Nicobar Islands of India. This study further assesses the potential of conservation and restoration practices and highlights the seagrass meadows as nature-based solution for climate change mitigation. The average value of the total carbon storage within seagrass meadows of this region is 121.95 ± 76.11 Mg ha-1 (average ± SD) and the total Corg stock of the seagrass meadows of this region was 429.11 ± 111.88 Tg, with the highest Corg stock in the Philippines (78%). The seagrass meadows of this region have the capacity to accumulate 5.85-6.80 Tg C year-1, which accounts for $214.6-249.4 million USD. Under the current rate of decline of 2.82%, the seagrass meadows are emitting 1.65-2.08 Tg of CO2 year-1 and the economic value of these losses accounts for $21.42-24.96 million USD. The potential of the seagrass meadows to the offset current CO2 emissions varies across the region, with the highest contribution to offset is in the seagrass meadows of the Philippines (11.71%). Current national policies and commitments of nationally determined contributions do not include blue carbon ecosystems as climate mitigation measures, even though these ecosystems can contribute up to 7.03% of the countries' reduction goal of CO2 emissions by 2030. The results of this study highlight and promote the potential of the southeast Asian seagrass meadows to national and international agencies as a practical scheme for nature-based solutions for climate change mitigation.
    Matched MeSH terms: Carbon/analysis
  11. Heo CC, Tomberlin JK, Aitkenhead-Peterson JA
    J Forensic Sci, 2021 May;66(3):947-959.
    PMID: 33290606 DOI: 10.1111/1556-4029.14645
    Under normal circumstances, insects such as blow flies will oviposit and larvae will colonize a carcass as soon as possible. However, insect colonization on a carcass may be delayed due to the effects of wrapping, shallow burial, addition of lime derivatives to mitigate scavenging and odor, or extreme weather. The impacts of delayed insect colonization on carcass decomposition and its subsequent effect on soil chemistry profiles have not been examined to date. The objectives of this study were to determine soil chemistry dynamics associated with porcine carcasses experiencing delayed insect colonization for 7-day or 14-day. Soil chemistry profiles such as ammonium-N (NH4 -N), orthophosphate-P (PO4 -P), and dissolved organic carbon (DOC) were significantly different among treatments: insect inclusion (immediate access of blow fly colonization on porcine carcasses), 7-day insect exclusion and 14-day insect exclusion (blow fly access was delayed up to 7-day and 14-day). Furthermore, significant differences of soil chemical profiles were detected between days of decomposition and soil regions. Soil moisture, NH4 -N, PO4 -P, and DOC were significantly higher when insects were excluded from the porcine carcass suggesting loss of tissue from larval feeding reduced the mass of nutrients entering the soil. This study provides useful information for forensic science in cases where insect colonization is delayed for a period of time postmortem and soil chemistry in the cadaver decomposition island is considered for estimating postmortem interval.
    Matched MeSH terms: Carbon/analysis
  12. Singh N, Banerjee T, Murari V, Deboudt K, Khan MF, Singh RS, et al.
    Chemosphere, 2021 Jan;263:128030.
    PMID: 33297051 DOI: 10.1016/j.chemosphere.2020.128030
    Size-segregated airborne fine (PM2.1) and coarse (PM>2.1) particulates were measured in an urban environment over central Indo-Gangetic plain in between 2015 and 2018 to get insights into its nature, chemistry and sources. Mean (±1σ) concentration of PM2.1 was 98 (±76) μgm-3 with a seasonal high during winter (DJF, 162 ± 71 μgm-3) compared to pre-monsoon specific high in PM>2.1 (MAMJ, 177 ± 84 μgm-3) with an annual mean of 170 (±69) μgm-3. PM2.1 was secondary in nature with abundant secondary inorganic aerosols (20% of particulate mass) and water-soluble organic carbon (19%) against metal enriched (25%) PM>2.1, having robust signature of resuspensions from Earth's crust and road dust. Ammonium-based neutralization of particulate acidity was essentially in PM2.1 with an indication of predominant H2SO4 neutralization in bisulfate form compared to Ca2+ and Mg2+-based neutralization in PM>2.1. Molecular distribution of n-alkanes homologues (C17-C35) showed Cmax at C23 (PM2.1) and C18 (PM>2.1) with weak dominance of odd-numbered n-alkanes. Carbon preference index of n-alkanes was close to unity (PM2.1: 1.4 ± 0.3; PM>2.1: 1.3 ± 0.4). Fatty acids (C12-C26) were characterized with predominance of even carbon with Cmax at n-hexadecanoic acid (C16:0). Low to high molecular weight fatty acid ratio ranged from 2.0 (PM>2.1) to 5.6 (PM2.1) with vital signature of anthropogenic emissions. Levoglucosan was abundant in PM2.1 (758 ± 481 ngm-3) with a high ratio (11.6) against galactosan, emphasizing robust contribution from burning of hardwood and agricultural residues. Receptor model resolves secondary aerosols and biomass burning emissions (45%) as the most influential sources of PM2.1 whereas, crustal (29%) and secondary aerosols (29%) were found responsible for PM>2.1; with significant variations among the seasons.
    Matched MeSH terms: Carbon/analysis
  13. Nodeh HR, Rashidi L, Gabris MA, Gholami Z, Shahabuddin S, Sridewi N
    J Oleo Sci, 2020 Nov 01;69(11):1359-1366.
    PMID: 33055442 DOI: 10.5650/jos.ess20128
    For the very first time, the nutritional and physicochemical properties of the oil extracted from hackberry Celtis australis fruit were investigated with the aim of possible applications of such wild fruit oil. The physicochemical properties such as peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were examined extensively. The obtained results showed that peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were found to be 4.9 meq O2/kg fat, 0.9 mg KOH/g fat, 193.6 mg KOH/g fat, 141.52 mg I2/g fat and ~5%, respectively. The predominant fatty acid found in this wild fruit is linoleic acid which was calculated to be 73.38%±1.24. In addition, gamma-tocopherol (87%) and β-sitosterol (81.2%±1.08) were the major tocopherol and sterol compositions found in Celtis australis seed oil. Moreover, equivalent carbon number (ECN) analysis has indicated that the three linoleic acids are the main composition of the triacylglycerols extracted from Celtis australis. Also, the high value of omega 6 and β-sitosterol make this oil applicable in cosmetics and pharmaceutical applications.
    Matched MeSH terms: Carbon/analysis*
  14. Godil DI, Sharif A, Afshan S, Yousuf A, Khan SAR
    Environ Sci Pollut Res Int, 2020 Aug;27(24):30108-30117.
    PMID: 32447733 DOI: 10.1007/s11356-020-09299-7
    This study examines the association between transportation services (i.e., passenger and freight) and carbon emissions concerning the US economy. The monthly data for this study were collected for the period from 2000 M1 to 2019 M8. In this study, QARDL econometric approach as discussed by Cho et al. (2015) has been used to tests the relationship between transportation services and CO2 emissions. Due to the chaotic and nonlinear behavior of our concerning variables, it was quite difficult to gauge the principle properties of their variations. Therefore, we relied on QARDL, which has been missing in previous researches. By utilizing the QARDL method, this research assesses the long-term stability of the nexus across the quantiles to provide an econometric framework that is more flexible than the traditional ones. In particular, the authors have analyzed how the quantiles of transportation (i.e., passenger and freight) influence the quantiles of CO2 emissions (environmental degradation). The empirical evidence revealed the negative significant relationship of both the transportation system (i.e., passenger and freight) with carbon emissions; however, this relationship holds at low quantiles of freight transport, whereas the same relationship has been observed at the majority of quantiles of passenger transport. So, this depicts that the transportation system of the USA helps to reduce CO2 emissions. Therefore, to maintain this situation, the government shall introduce more technologies that are fuel-efficient and promote clean consumption, thus reducing CO2 emissions, boosting economic growth, and making green transportation services.
    Matched MeSH terms: Carbon/analysis
  15. Wang W, Zhou F, Chang Y, Cui J, He D, Du J, et al.
    Bull Environ Contam Toxicol, 2020 Mar;104(3):380-385.
    PMID: 31932904 DOI: 10.1007/s00128-020-02786-0
    In this study, three soil amendments (inorganic, liming, or organic-inorganic materials) were used in a Cd-contaminated purple field soil to investigate their impacts on soil Cd availability, enzyme (urease, catalase, sucrase, and acid phosphatase) activities, microbial biomass (carbon/nitrogen) and type (bacteria, fungi, and actinomycetes) in mustard and corn trials. Results showed that soil amendments generally decreased soil exchangeable Cd, fungi and bacterial populations while increasing the activities of all the four soil enzymes tested, microbial biomass carbon and populations of actinomycetes (p  0.05) whereas stronger effects appeared in soil organic matter and available nutrients (nitrogen, phosphorous and potassium; p 
    Matched MeSH terms: Carbon/analysis
  16. Serrano O, Lovelock CE, B Atwood T, Macreadie PI, Canto R, Phinn S, et al.
    Nat Commun, 2019 10 02;10(1):4313.
    PMID: 31575872 DOI: 10.1038/s41467-019-12176-8
    Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.
    Matched MeSH terms: Carbon/analysis*
  17. Almugren KS, Sani SFA, Wandira R, Wahib N, Rozaila ZS, Khandaker MU, et al.
    Appl Radiat Isot, 2019 Sep;151:102-110.
    PMID: 31163392 DOI: 10.1016/j.apradiso.2019.04.027
    Present research concerns the TL signal stored in chalk of the variety commercially available for writing on blackboards. Samples of this have been subjected to x-ray irradiation, the key dosimetric parameters investigated including dose and energy response, sensitivity, fading and glow curve analysis. Three types of chalk have been investigated, each in five different colours. The samples were annealed at 323 K prior to irradiation. For all three chalk types and all five colours, the dose response has been found linear over the investigated dose range, 0-9 Gy. Regardless of type or colour, photoelectric energy dependency is apparent at the low energy end down to the lowest investigated accelerating potential of 30 kV. Crayola (Yellow) has shown the greatest TL sensitivity, thus selection has been made to limit further analysis to this medium alone, specifically in respect of glow curve and fading study. In addition, elemental compositional and structural change characterizations were made for the same medium, utilizing Energy Dispersive X-Ray (EDX) and Raman spectroscopy, respectively.
    Matched MeSH terms: Carbon/analysis
  18. Zhao X, Zhu M, Guo X, Wang H, Sui B, Zhao L
    Environ Sci Pollut Res Int, 2019 May;26(14):13746-13754.
    PMID: 30008165 DOI: 10.1007/s11356-018-2270-1
    The soil organic carbon accumulation in soda saline-alkaline soil and the humus composition changes with application of aluminum sulfate and rice straw were investigated by the controlled simulative experiments in laboratory. For evaluating the amelioration effect, organic carbon content and humus composition in soda saline-alkaline soil were investigated with different application amounts of rice straw and aluminum sulfate. Potassium dichromate oxidation titration (exogenous heat) method and Kumada method were used to analyze the contents of organic carbon and humus composition, respectively. The transformation of soil organic matter in the saline-alkali soil during the amelioration has been clarified in this paper. The results demonstrated that the contents of soil organic carbon were significantly increased (13-92%) with different application amounts of rice straw and aluminum sulfate. The contents of free fraction and combined fraction of humus and their compositions (humic acid and fulvic acid) were increased with different application amounts of rice straw. The free fraction of humus was increased more dramatically. Due to aluminum sulfate application, free fraction of humus and humic acid (HA) was transformed to combined fraction partially. Free HA was changed to be P type with rice straw application. With aluminum sulfate application, free form of HA was changed from type P to type Rp. For rice straw application, combined HA only was transferred within the area of type A. Aluminum sulfate addition had no significant effect on the type of combined form of HA. With the same amount of rice straw application, the contents of soil organic carbon were increased by increasing the amount of aluminum sulfate application. Both rice straw and aluminum sulfate applications could reduce the humification degree of free and combined fraction of HA. According to the types of HA, it could be concluded that humus became younger and renewed due to the application of rice straw and aluminum sulfate.
    Matched MeSH terms: Carbon/analysis*
  19. Rozainah MZ, Nazri MN, Sofawi AB, Hemati Z, Juliana WA
    Mar Pollut Bull, 2018 Dec;137:237-245.
    PMID: 30503430 DOI: 10.1016/j.marpolbul.2018.10.023
    This paper evaluated the total carbon stock of mangrove ecosystems in two contrasting sites: a fishing village in Delta Kelantan (DK) and Ramsar sites in Johor Park (JP). In both sites, aboveground carbon was significantly higher than belowground carbon, and stems contained more carbon than leaf and root partitions. The average carbon concentration of individual mangrove species (44.9-48.1%) was not significantly different but the larger biomass of the DK samples resulted in vegetation carbon stock that was higher than that in JP. Season played an important role in soil carbon stock-a pronounced wet season in DK coincided with the dry season in JP. The total carbon pool was estimated to be 427.88 t ha-1 in JP and 512.51 t ha-1 in DK, where at least 80% was contributed by soil carbon. The carbon dioxide equivalent was 1570.32 t ha-1 CO2e (JP) and 1880.91 t ha-1 CO2e (DK).
    Matched MeSH terms: Carbon/analysis*
  20. Salihu SO, Bakar NKA
    Environ Monit Assess, 2018 May 30;190(6):369.
    PMID: 29850927 DOI: 10.1007/s10661-018-6727-y
    The analysis of total organic carbon (TOC) by the American Public Health Association (APHA) closed-tube reflux colorimetric method requires potassium dichromate (K2Cr2O7), silver sulfate (AgSO4), and mercury (HgSO4) sulfate in addition to large volumes of both reagents and samples. The method relies on the release of oxygen from dichromate on heating which is consumed by carbon associated with organic compounds. The method risks environmental pollution by discharging large amounts of chromium (VI) and silver and mercury sulfates. The present method used potassium monochromate (K2CrO4) to generate the K2Cr2O7 on demand in the first phase. In addition, miniaturizing the procedure to semi microanalysis decreased the consumption of reagents and samples. In the second phase, mercury sulfate was eliminated as part of the digestion mixture through the introduction of sodium bismuthate (NaBiO3) for the removal of chlorides from the sample. The modified method, the potassium monochromate closed-tube colorimetry with sodium bismuthate chloride removal (KMCC-Bi), generates the potassium dichromate on demand and eliminates mercury sulfate. The semi microanalysis procedure leads to a 60% reduction in sample volume and ≈ 33.33 and 60% reduction in monochromate and silver sulfate consumption respectively. The LOD and LOQ were 10.17 and 33.90 mg L-1 for APHA, and 4.95 and 16.95 mg L-1 for KMCC-Bi. Recovery was between 83 to 98% APHA and 92 to 104% KMCC-Bi, while the RSD (%) ranged between 0.8 to 5.0% APHA and 0.00 to 0.62% KMCC-Bi. The method was applied for the UV-Vis spectrometry determination of COD in water and wastewater. Statistics was done by MINITAB 17 or MS Excel 2016. ᅟ Graphical abstract.
    Matched MeSH terms: Carbon/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links