Displaying publications 1 - 20 of 238 in total

Abstract:
Sort:
  1. Abd Wahid MA, Megat Mohd Noor MJ, Goto M, Sugiura N, Othman N, Zakaria Z, et al.
    Biosci Biotechnol Biochem, 2017 Aug;81(8):1642-1649.
    PMID: 28585494 DOI: 10.1080/09168451.2017.1329617
    The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.
    Matched MeSH terms: Cloning, Molecular
  2. Abdul Hamid NK, Carmona-Antoñanzas G, Monroig Ó, Tocher DR, Turchini GM, Donald JA
    PLoS One, 2016;11(3):e0150770.
    PMID: 26943160 DOI: 10.1371/journal.pone.0150770
    Rainbow trout, Oncorhynchus mykiss, are intensively cultured globally. Understanding their requirement for long-chain polyunsaturated fatty acids (LC-PUFA) and the biochemistry of the enzymes and biosynthetic pathways required for fatty acid synthesis is important and highly relevant in current aquaculture. Most gnathostome vertebrates have two fatty acid desaturase (fads) genes with known functions in LC-PUFA biosynthesis and termed fads1 and fads2. However, teleost fish have exclusively fads2 genes. In rainbow trout, a fads2 cDNA had been previously cloned and found to encode an enzyme with Δ6 desaturase activity. In the present study, a second fads2 cDNA was cloned from the liver of rainbow trout and termed fads2b. The full-length mRNA contained 1578 nucleotides with an open reading frame of 1365 nucleotides that encoded a 454 amino acid protein with a predicted molecular weight of 52.48 kDa. The predicted Fads2b protein had the characteristic traits of the microsomal Fads family, including an N-terminal cytochrome b5 domain containing the heme-binding motif (HPPG), histidine boxes (HDXGH, HFQHH and QIEHH) and three transmembrane regions. The fads2b was expressed predominantly in the brain, liver, intestine and pyloric caeca. Expression of the fasd2b in yeast generated a protein that was found to specifically convert eicosatetraenoic acid (20:4n-3) to eicosapentaenoic acid (20:5n-3), and therefore functioned as a Δ5 desaturase. Therefore, rainbow trout have two fads2 genes that encode proteins with Δ5 and Δ6 desaturase activities, respectively, which enable this species to perform all the desaturation steps required for the biosynthesis of LC-PUFA from C18 precursors.
    Matched MeSH terms: Cloning, Molecular
  3. Abdulsalam AM, Ithoi I, Al-Mekhlafi HM, Al-Mekhlafi AM, Ahmed A, Surin J
    PLoS One, 2013;8(12):e84372.
    PMID: 24376805 DOI: 10.1371/journal.pone.0084372
    BACKGROUND: Blastocystis is a genetically diverse and a common intestinal parasite of humans with a controversial pathogenic potential. This study was carried out to identify the Blastocystis subtypes and their association with demographic and socioeconomic factors among outpatients living in Sebha city, Libya.

    METHODS/FINDINGS: Blastocystis in stool samples were cultured followed by isolation, PCR amplification of a partial SSU rDNA gene, cloning, and sequencing. The DNA sequences of isolated clones showed 98.3% to 100% identity with the reference Blastocystis isolates from the Genbank. Multiple sequence alignment showed polymorphism from one to seven base substitution and/or insertion/deletion in several groups of non-identical nucleotides clones. Phylogenetic analysis revealed three assemblage subtypes (ST) with ST1 as the most prevalent (51.1%) followed by ST2 (24.4%), ST3 (17.8%) and mixed infections of two concurrent subtypes (6.7%).

    BLASTOCYSTIS: ST1 infection was significantly associated with female (P = 0.009) and low educational level (P = 0.034). ST2 was also significantly associated with low educational level (P= 0.008) and ST3 with diarrhoea (P = 0.008).

    CONCLUSION: Phylogenetic analysis of Libyan Blastocystis isolates identified three different subtypes; with ST1 being the predominant subtype and its infection was significantly associated with female gender and low educational level. More extensive studies are needed in order to relate each Blastocystis subtype with clinical symptoms and potential transmission sources in this community.

    Matched MeSH terms: Cloning, Molecular
  4. Abubakar MB, Aini I, Omar AR, Hair-Bejo M
    J Biomed Biotechnol, 2011;2011:414198.
    PMID: 21541235 DOI: 10.1155/2011/414198
    Avian influenza (AI) is a highly contagious and rapidly evolving pathogen of major concern to the poultry industry and human health. Rapid and accurate detection of avian influenza virus is a necessary tool for control of outbreaks and surveillance. The AI virus A/Chicken/Malaysia/5858/2004 (H5N1) was used as a template to produce DNA clones of the full-length NS1 genes via reverse transcriptase synthesis of cDNA by PCR amplification of the NS1 region. Products were cloned into pCR2.0 TOPO TA plasmid and subsequently subcloned into pPICZαA vector to construct a recombinant plasmid. Recombinant plasmid designated as pPICZαA-NS1 gene was confirmed by PCR colony screening, restriction enzyme digestion, and nucleotide sequence analysis. The recombinant plasmid was transformed into Pichia pastoris GS115 strain by electroporation, and expressed protein was identified by SDS-PAGE and western blotting. A recombinant protein of approximately ~28 kDa was produced. The expressed protein was able to bind a rabbit polyclonal antibody of nonstructural protein (NS1) avian influenza virus H5N1. The result of the western blotting and solid-phase ELISA assay using H5N1 antibody indicated that the recombinant protein produced retained its antigenicity. This further indicates that Pichia pastoris could be an efficient expression system for a avian influenza virus nonstructural (NS1).
    Matched MeSH terms: Cloning, Molecular
  5. Ahmed IM, Khairani-Bejo S, Hassan L, Bahaman AR, Omar AR
    BMC Vet Res, 2015;11:275.
    PMID: 26530141 DOI: 10.1186/s12917-015-0587-2
    Brucella melitensis is the most important pathogenic species of Brucella spp. which affects goats and sheep and causes caprine and ovine brucellosis, respectively. Serological tests for diagnosis of brucellosis such as Rose Bengal plate test (RBPT) and enzyme-linked immunosorbent assay (ELISA) usually utilize smooth lipopolysaccharides (S-LPS) as a diagnostic antigen which could give false positive serological reactions. Outer membrane proteins (OMP) of B. melitensis have been used as alternative diagnostic antigens rather than S-LPS for differential serological diagnosis of brucellosis, mainly in ELISA with single recombinant OMP (rOMP) as a diagnostic antigen. Nevertheless, the use of single format mainly showed lack of sensitivity against the desired rOMP. Therefore, this study aimed to determine whether a newly developed rOMPs indirect ELISA (rOMPs I-ELISA), based on combination of rOMP25, rOMP28 and rOMP31of B. melitensis, has a potential benefit for use in the serodiagnosis of brucellosis.
    Matched MeSH terms: Cloning, Molecular
  6. Alfizah H, Ramelah M
    Malays J Pathol, 2012 Jun;34(1):29-34.
    PMID: 22870595 MyJurnal
    Infection with Helicobacter pylori cagA-positive strains is associated with gastroduodenal diseases. The CagA protein is injected into gastric epithelial cells and supposedly induces morphological changes termed the 'hummingbird phenotype', which is associated with scattering and increased cell motility. The molecular mechanisms leading to the CagA-dependent morphological changes are only partially known. The present study was carried out to investigate the effect of CagA variants on the magnitude of gastric epithelial cell morphological changes. Recombinant 3' terminal domains of cagA were cloned and expressed in a gastric epithelial cell line and the hummingbird phenotype was quantified by microscopy. The 3' region of the cagA gene of Malaysian H. pylori isolates showed six sub-genotypes that differed in the structural organization of the EPIYA repeat sequences. The percentage of hummingbird cells induced by CagA increased with duration of transfection. The hummingbird phenotype was observed to be more pronounced when CagA with 4 EPIYA motifs rather than 3 or 2 EPIYA motifs was produced. The activity of different CagA variants in the induction of the hummingbird phenotype in gastric epithelial cells depends at least in part on EPIYA motif variability. The difference in CagA genotypes might influence the potential of individual CagAs to cause morphological changes in host cells. Depending on the relative exposure of cells to CagA genotypes, this may contribute to the various disease outcomes caused by H. pylori infection in different individuals.
    Matched MeSH terms: Cloning, Molecular
  7. Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N
    J Microbiol Biotechnol, 2024 Feb 28;34(2):436-456.
    PMID: 38044750 DOI: 10.4014/jmb.2306.06050
    Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
    Matched MeSH terms: Cloning, Molecular
  8. Amelia K, Singh J, Shah FH, Bhore SJ
    Pharmacognosy Res, 2015 Apr-Jun;7(2):209-12.
    PMID: 25829797 DOI: 10.4103/0974-8490.150536
    Common bean (Phaseolus vulgaris L.) is an important part of the human diet and serves as a source of natural products. Identification and understanding of genes in P. vulgaris is important for its improvement. Characterization of expressed sequence tags (ESTs) is one of the approaches in understanding the expressed genes. For the understanding of genes expression in P. vulgaris pod-tissue, research work of ESTs generation was initiated by constructing cDNA libraries using 5-day and 20-day old bean-pod-tissues. Altogether, 5972 cDNA clones were isolated to have ESTs. While processing ESTs, we found a transcript for calmodulin (CaM) gene. It is an important gene that encodes for a calcium-binding protein and known to express in all eukaryotic cells. Hence, this study was undertaken to analyse and annotate it.
    Matched MeSH terms: Cloning, Molecular
  9. Arif SA, Hamilton RG, Yusof F, Chew NP, Loke YH, Nimkar S, et al.
    J Biol Chem, 2004 Jun 04;279(23):23933-41.
    PMID: 15024009
    Recurring reports of a highly allergenic 42-46-kDa protein in Hevea brasiliensis latex appeared to have been resolved with the discovery of a 43-kDa allergenic latex protein that was a homologue to patatin. However, the low to moderate prevalence of sensitization to the protein, designated Hev b 7, among latex-allergic patients could not adequately explain the frequent observations of the 42-46-kDa allergen. This led to the hypothesis that another, more allergenic protein of a similar molecular mass existed in Hevea latex. We report the isolation and purification of a 42.98-kDa latex glycoprotein showing homology to the early nodule-specific protein (ENSP) of the legumes Medicago sativa, Medicago truncatula, and Glycine max. The protein is allergenic, being recognized by immunoglobulin E (IgE) in sera from latex-allergic patients. The IgE epitope resides on the carbohydrate moiety of the protein, and the presence of a similar carbohydrate component on potato tuber patatin enables the latter to inhibit IgE binding to the ENSP homologue. The cDNA encoding the ENSP homologue was isolated by reverse transcription-PCR and cloned. The protein predicted from the cDNA sequence has 391 amino acids, the first 26 of which constitute a putative signal peptide. The deduced molecular mass of the mature protein is 40.40 kDa, while its isoelectric point is estimated at 5.0. The discrepancy between the predicted and observed molecular mass might be due to glycosylation, for which three N-sites on the protein are predicted. The purified protein showed lipase and esterase activities and may be involved in plant defense.
    Matched MeSH terms: Cloning, Molecular
  10. Ariffin N, Abdullah R, Rashdan Muad M, Lourdes J, Emran NA, Ismail MR, et al.
    Plasmid, 2011 Sep;66(3):136-43.
    PMID: 21827784 DOI: 10.1016/j.plasmid.2011.07.002
    Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is a polyhydroxyalkanoate (PHA) bioplastic group with thermoplastic properties is thus high in quality and can be degradable. PHBV can be produced by bacteria, but the process is not economically competitive with polymers produced from petrochemicals. To overcome this problem, research on transgenic plants has been carried out as one of the solutions to produce PHBV in economically sound alternative manner. Four different genes encoded with the enzymes necessary to catalyze PHBV are bktB, phaB, phaC and tdcB. All the genes came with modified CaMV 35S promoters (except for the tdcB gene, which was promoted by the native CaMV 35S promoter), nos terminator sequences and plastid sequences in order to target the genes into the plastids. Subcloning resulted in the generation of two different orientations of the tdcB, pLMIN (left) and pRMIN (right), both 17.557 and 19.967 kb in sizes. Both plasmids were transformed in immature embryos (IE) of oil palm via Agrobacterium tumefaciens. Assays of GUS were performed on one-week-old calli and 90% of the calli turned completely blue. This preliminary test showed positive results of integration. Six-months-old calli were harvested and RNA of the calli were isolated. RT-PCR was used to confirm the transient expression of PHBV transgenes in the calli. The bands were 258, 260, 315 and 200 bp in size for bktB, phaB, phaC and tdcB transgenes respectively. The data obtained showed that the bktB, phaB, phaC and tdcB genes were successfully integrated and expressed in the oil palm genome.
    Matched MeSH terms: Cloning, Molecular
  11. Armugam A, Earnest L, Chung MC, Gopalakrishnakone P, Tan CH, Tan NH, et al.
    Toxicon, 1997 Jan;35(1):27-37.
    PMID: 9028006
    cDNAs encoding three phospholipase A2 (PLA2) isoforms in Naja naja sputatrix were cloned and characterized. One of them encoded an acidic PLA2 (APLA) while the others encoded neutral PLA2 (NPLA-1 and NPLA-2). The specific characteristics of APLA and NPLA were attributed to mutations at nt139 and nt328 from G to C and G to A, respectively, resulting in amino acid substitutions from Asp20 and 83 in APLA to His20 and Asn83 in NPLA. Amino acid sequencing of purified protein also showed the presence of this Asp20 and His20 in APLA and NPLA, respectively. The cDNA encoding one of the PLA2 (NAJPLA-2A), when expressed in Escherichia coli, yielded a protein that exhibited PLA2 activity.
    Matched MeSH terms: Cloning, Molecular
  12. Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Alinejaid T, Othman RY, et al.
    Fish Shellfish Immunol, 2011 Jul;31(1):81-9.
    PMID: 21549198 DOI: 10.1016/j.fsi.2011.04.004
    Arginine kinase-1 (MrAK-1) was sequenced from the freshwater prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrAK-1 consisted of 1068 bp nucleotide encoded 355 polypeptide with an estimated molecular mass of 40 kDa. MrAK-1 sequence contains a potential ATP:guanido phosphotransferases active domain site. The deduced amino acid sequence of MrAK-1 was compared with other 7 homologous arginine kinase (AK) and showed the highest identity (96%) with AK-1 from cherry shrimp Neocaridina denticulate. The qRT-PCR analysis revealed a broad expression of MrAK-1 with the highest expression in the muscle and the lowest in the eyestalk. The expression of MrAK-1 after challenge with the infectious hypodermal and hematopoietic necrosis virus (IHHNV) was tested in muscle. In addition, MrAK-1 was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The optimum temperature (30 °C) and pH (8.5) was determined for the enzyme activity assay. MrAK-1 showed significant (P < 0.05) activity towards 10-50 mM ATP concentration. The enzyme activity was inhibited by α-ketoglutarate, glucose and ATP at the concentration of 10, 50 and 100 mM respectively. Conclusively, the findings of this study indicated that MrAK-1 might play an important role in the coupling of energy production and utilization and the immune response in shrimps.
    Matched MeSH terms: Cloning, Molecular
  13. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 May;32(5):670-82.
    PMID: 22293093 DOI: 10.1016/j.fsi.2012.01.013
    In this study, we reported a full length of catalase gene (designated as MrCat), identified from the transcriptome database of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrCat is 2504 base pairs in length, and encodes 516 amino acids. The MrCat protein contains three domains such as catalase 1 (catalase proximal heme-ligand signature) at 350-358, catalase 2 (catalase proximal active site signature) at 60-76 and catalase 3 (catalase family profile) at 20-499. The mRNA expressions of MrCat in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction (qRT-PCR). The MrCat is highly expressed in digestive tract and all the other tissues (walking leg, gills, muscle, hemocyte, hepatopancreas, pleopods, brain and eye stalk) of M. rosenbergii taken for analysis. The expression is strongly up-regulated in digestive tract after IHHNV challenge. To understand its biological activity, the recombinant MrCat gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCat existed in high thermal stability and broad spectrum of pH, which showed over 95% enzyme activity between pH 5 and 10.5, and was stable from 40 °C to 70 °C, and exhibited 85-100% enzyme activity from 30 °C to 40 °C.
    Matched MeSH terms: Cloning, Molecular
  14. Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, et al.
    Nat Biotechnol, 2019 02;37(2):139-143.
    PMID: 30718880 DOI: 10.1038/s41587-018-0007-9
    Disease resistance (R) genes from wild relatives could be used to engineer broad-spectrum resistance in domesticated crops. We combined association genetics with R gene enrichment sequencing (AgRenSeq) to exploit pan-genome variation in wild diploid wheat and rapidly clone four stem rust resistance genes. AgRenSeq enables R gene cloning in any crop that has a diverse germplasm panel.
    Matched MeSH terms: Cloning, Molecular*
  15. Ashaari NS, Ab Rahim MH, Sabri S, Lai KS, Song AA, Abdul Rahim R, et al.
    PLoS One, 2020;15(7):e0235416.
    PMID: 32614884 DOI: 10.1371/journal.pone.0235416
    Plectranthus amboinicus (Lour.) Spreng is an aromatic medicinal herb known for its therapeutic and nutritional properties attributed by the presence of monoterpene and sesquiterpene compounds. Up until now, research on terpenoid biosynthesis has focused on a few mint species with economic importance such as thyme and oregano, yet the terpene synthases responsible for monoterpene production in P. amboinicus have not been described. Here we report the isolation, heterologous expression and functional characterization of a terpene synthase involved in P. amboinicus terpenoid biosynthesis. A putative monoterpene synthase gene (PamTps1) from P. amboinicus was isolated with an open reading frame of 1797 bp encoding a predicted protein of 598 amino acids with molecular weight of 69.6 kDa. PamTps1 shares 60-70% amino acid sequence similarity with other known terpene synthases of Lamiaceae. The in vitro enzymatic activity of PamTps1 demonstrated the conversion of geranyl pyrophosphate and farnesyl pyrophosphate exclusively into linalool and nerolidol, respectively, and thus PamTps1 was classified as a linalool/nerolidol synthase. In vivo activity of PamTps1 in a recombinant Escherichia coli strain revealed production of linalool and nerolidol which correlated with its in vitro activity. This outcome validated the multi-substrate usage of this enzyme in producing linalool and nerolidol both in in vivo and in vitro systems. The transcript level of PamTps1 was prominent in the leaf during daytime as compared to the stem. Gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analyses showed that maximal linalool level was released during the daytime and lower at night following a diurnal circadian pattern which correlated with the PamTps1 expression pattern. The PamTps1 cloned herein provides a molecular basis for the terpenoid biosynthesis in this local herb that could be exploited for valuable production using metabolic engineering in both microbial and plant systems.
    Matched MeSH terms: Cloning, Molecular
  16. Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA
    Crit Rev Biotechnol, 2016;36(2):353-67.
    PMID: 25394538 DOI: 10.3109/07388551.2014.961403
    Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (∼500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ∼22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.
    Matched MeSH terms: Cloning, Molecular*
  17. Atago Y, Shimodaira J, Araki N, Bin Othman N, Zakaria Z, Fukuda M, et al.
    Biosci Biotechnol Biochem, 2016 May;80(5):1012-9.
    PMID: 26828632 DOI: 10.1080/09168451.2015.1127134
    Rhodococcus jostii RHA1 (RHA1) degrades polychlorinated biphenyl (PCB) via co-metabolism with biphenyl. To identify the novel open reading frames (ORFs) that contribute to PCB/biphenyl metabolism in RHA1, we compared chromatin immunoprecipitation chip and transcriptomic data. Six novel ORFs involved in PCB/biphenyl metabolism were identified. Gene deletion mutants of these 6 ORFs were made and were tested for their ability to grow on biphenyl. Interestingly, only the ro10225 deletion mutant showed deficient growth on biphenyl. Analysis of Ro10225 protein function showed that growth of the ro10225 deletion mutant on biphenyl was recovered when exogenous recombinant Ro10225 protein was added to the culture medium. Although Ro10225 protein has no putative secretion signal sequence, partially degraded Ro10225 protein was detected in conditioned medium from wild-type RHA1 grown on biphenyl. This Ro10225 fragment appeared to form a complex with another PCB/biphenyl oxidation enzyme. These results indicated that Ro10225 protein is essential for the formation of the PCB/biphenyl dioxygenase complex in RHA1.
    Matched MeSH terms: Cloning, Molecular
  18. Au SL, Tan SH, Harikrishna K, Napis S
    J. Biochem. Mol. Biol. Biophys., 2002 Oct;6(5):301-8.
    PMID: 12385964
    Four ADP-glucose pyrophosphorylase cDNA clones were isolated from mature leaves and pith of sago palm by the polymerase chain reaction (PCR) technique. Three of them (agpp10, agpp12 and agpl19) encoded the AGP large subunit, while the fourth clone (agpl1) encoded the small subunit. agpp10 and agpp12 were isolated from pith, agpl19 was isolated from mature leaves, while agpl1 from both tissues. In addition, a full-length cDNA of agpl1 was successfully isolated from a cDNA library of mature leaves by a PCR-based screening technique. Semi-quantitative analysis suggests that agpp10 and agpp12 were detectable only in pith, agpl19 only in leaves, while agpl1 was expressed in both leaves and pith tissues.
    Matched MeSH terms: Cloning, Molecular
  19. Avicor SW, Wajidi MF, Jaal Z, Yahaya ZS
    Acta Biochim. Pol., 2016;63(2):243-6.
    PMID: 27059016 DOI: 10.18388/abp.2014_909
    Septins belong to GTPases that are involved in vital cellular activities, including cytokinesis. Although present in many organisms, they are yet to be isolated from Aedes albopictus. This study reports for the first time on a serendipitous isolation of a partial septin sequence from Ae. albopictus and its developmental expression profile. The Ae. albopictus partial septin sequence contains 591 nucleotides encoding 197 amino acids. It shares homology with several insect septin genes and has a close phylogenetic relationship with Aedes aegypti and Culex quinquefasciatus septins. The Ae. albopictus septin fragment was differentially expressed in the mosquito's developmental stages, with an increased expression in the adults.
    Matched MeSH terms: Cloning, Molecular
  20. Aw-Yong KL, Sam IC, Koh MT, Chan YF
    PLoS One, 2016;11(11):e0165659.
    PMID: 27806091 DOI: 10.1371/journal.pone.0165659
    Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). Unlike other enteroviruses that cause HFMD, EV-A71 is more frequently associated with severe neurological complications and fatality. To date, no effective licensed antivirals are available to combat EV-A71 infection. Little is known about the immunogenicity of viral non-structural proteins in humans. Previous studies have mainly focused on characterization of epitopes of EV-A71 structural proteins by using immunized animal antisera. In this study, we have characterized human antibody responses against the structural and non-structural proteins of EV-A71. Each viral protein was cloned and expressed in either bacterial or mammalian systems, and tested with antisera by western blot. Results revealed that all structural proteins (VP1-4), and non-structural proteins 2A, 3C and 3D were targets of EV-A71 IgM, whereas EV-A71 IgG recognized all the structural and non-structural proteins. Sixty three synthetic peptides predicted to be immunogenic in silico were synthesized and used for the characterization of EV-A71 linear B-cell epitopes. In total, we identified 22 IgM and four IgG dominant epitopes. Synthetic peptide PEP27, corresponding to residues 142-156 of VP1, was identified as the EV-A71 IgM-specific immunodominant epitope. PEP23, mapped to VP1 41-55, was recognized as the EV-A71 IgG cross-reactive immunodominant epitope. The structural protein VP1 is the major immunodominant site targeted by anti-EV-A71 IgM and IgG antibodies, but epitopes against non-structural proteins were also detected. These data provide new understanding of the immune response to EV-A71 infection, which benefits the development of diagnostic tools, potential therapeutics and subunit vaccine candidates.
    Matched MeSH terms: Cloning, Molecular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links