Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Hasbullah HH, Musa M
    Int J Mol Sci, 2021 Nov 03;22(21).
    PMID: 34769370 DOI: 10.3390/ijms222111941
    Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide and is responsible as one of the main causes of mortality in both men and women. Despite massive efforts to raise public awareness on early screening and significant advancements in the treatment for CRC, the majority of cases are still being diagnosed at the advanced stage. This contributes to low survivability due to this cancer. CRC patients present various genetic changes and epigenetic modifications. The most common genetic alterations associated with CRC are p53 and KRAS mutations. Gene therapy targeting defect genes such as TP53 (tumor suppressor gene encodes for p53) and KRAS (oncogene) in CRC potentially serves as an alternative treatment avenue for the disease in addition to the standard therapy. For the last decade, significant developments have been seen in gene therapy for translational purposes in treating various cancers. This includes the development of vectors as delivery vehicles. Despite the optimism revolving around targeted gene therapy for cancer treatment, it also has various limitations, such as a lack of availability of related technology, high cost of the involved procedures, and ethical issues. This article will provide a review on the potentials and challenges of gene therapy targeting p53 and KRAS for the treatment of CRC.
    Matched MeSH terms: Colorectal Neoplasms/genetics
  2. Juhari WKW, Ahmad Amin Noordin KB, Zakaria AD, Rahman WFWA, Mokhter WMMWM, Hassan MRA, et al.
    Genes (Basel), 2021 09 20;12(9).
    PMID: 34573430 DOI: 10.3390/genes12091448
    BACKGROUND: This study aimed to identify new genes associated with CRC in patients with normal mismatch repair (MMR) protein expression.

    METHOD: Whole-genome sequencing (WGS) was performed in seven early-age-onset Malay CRC patients. Potential germline genetic variants, including single-nucleotide variations and insertions and deletions (indels), were prioritized using functional and predictive algorithms.

    RESULTS: An average of 3.2 million single-nucleotide variations (SNVs) and over 800 indels were identified. Three potential candidate variants in three genes-IFNE, PTCH2 and SEMA3D-which were predicted to affect protein function, were identified in three Malay CRC patients. In addition, 19 candidate genes-ANKDD1B, CENPM, CLDN5, MAGEB16, MAP3K14, MOB3C, MS4A12, MUC19, OR2L8, OR51Q1, OR51AR1, PDE4DIP, PKD1L3, PRIM2, PRM3, SEC22B, TPTE, USP29 and ZNF117-harbouring nonsense variants were prioritised. These genes are suggested to play a role in cancer predisposition and to be associated with cancer risk. Pathway enrichment analysis indicated significant enrichment in the olfactory signalling pathway.

    CONCLUSION: This study provides a new spectrum of insights into the potential genes, variants and pathways associated with CRC in Malay patients.

    Matched MeSH terms: Colorectal Neoplasms/genetics*
  3. Li H, Zhao L, Lau YS, Zhang C, Han R
    Oncogene, 2021 01;40(1):177-188.
    PMID: 33110234 DOI: 10.1038/s41388-020-01523-5
    Colorectal cancer is the third leading cause of cancer-related deaths in the United States and the third most common cancer in men and women. Around 20% colon cancer cases are closely linked with colitis. Both environmental and genetic factors are thought to contribute to colon inflammation and tumor development. However, the genetic factors regulating colitis and colon tumorigenesis remain elusive. Since reactive oxygen species (ROS) is vitally involved in tissue inflammation and tumorigenesis, here we employed a genome-wide CRISPR knockout screening approach to systemically identify the genetic factors involved in the regulation of oxidative stress. Next generation sequencing (NGS) showed that over 600 gRNAs including the ones targeting LGALS2 were highly enriched in cells survived after sublethal H2O2 challenge. LGALS2 encodes the glycan-binding protein Galectin 2 (Gal2), which is predominantly expressed in the gastrointestinal tract and downregulated in human colon tumors. To examine the role of Gal2 in colitis, we employed the dextran sodium sulfate (DSS)-induced acute colitis model in mice with (WT) or without Lgals2 (Gal2-KO) and showed that Gal2 deficiency ameliorated DSS-induced colitis. We further demonstrated that Gal2-KO mice developed significantly larger tumors than WT mice using Azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colorectal cancer model. We found that STAT3 phosphorylation was significantly increased in Gal2-deficient tumors as compared to those in WT mice. Gal2 overexpression decreased the proliferation of human colon tumor epithelial cells and blunted H2O2-induced STAT3 phosphorylation. Overall, our results demonstrate that Gal2 plays a suppressive role in colon tumor growth and highlights the therapeutic potential of Gal2 in colon cancer.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  4. Dhillon VS, Deo P, Bonassi S, Fenech M
    Mutat Res Rev Mutat Res, 2021;787:108372.
    PMID: 34083057 DOI: 10.1016/j.mrrev.2021.108372
    Micronucleus (MN) assay has been widely used as a biomarker of DNA damage, chromosomal instability, cancer risk and accelerated aging in many epidemiological studies. In this narrative review and meta-analysis we assessed the association between lymphocyte micronuclei (MNi) and cancers of the skin, blood, digestive tract, and prostate. The review identified nineteen studies with 717 disease subjects and 782 controls. Significant increases in MRi for MNi were observed in the following groups: subjects with blood cancer (MRi = 3.98; 95 % CI: 1.98-7.99; p = 0.000) and colorectal cancer (excluding IBD) (MRi = 2.69; 95 % CI: 1.82-3.98, p 
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  5. Rengganaten V, Huang CJ, Tsai PH, Wang ML, Yang YP, Lan YT, et al.
    Int J Mol Sci, 2020 Oct 23;21(21).
    PMID: 33114016 DOI: 10.3390/ijms21217864
    Spheroidal cancer cell cultures have been used to enrich cancer stem cells (CSC), which are thought to contribute to important clinical features of tumors. This study aimed to map the regulatory networks driven by circular RNAs (circRNAs) in CSC-enriched colorectal cancer (CRC) spheroid cells. The spheroid cells established from two CRC cell lines acquired stemness properties in pluripotency gene expression and multi-lineage differentiation capacity. Genome-wide sequencing identified 1503 and 636 circRNAs specific to the CRC parental and spheroid cells, respectively. In the CRC spheroids, algorithmic analyses unveiled a core network of mRNAs involved in modulating stemness-associated signaling pathways, driven by a circRNA-microRNA (miRNA)-mRNA axis. The two major circRNAs, hsa_circ_0066631 and hsa_circ_0082096, in this network were significantly up-regulated in expression levels in the spheroid cells. The two circRNAs were predicted to target and were experimentally shown to down-regulate miR-140-3p, miR-224, miR-382, miR-548c-3p and miR-579, confirming circRNA sponging of the targeted miRNAs. Furthermore, the affected miRNAs were demonstrated to inhibit degradation of six mRNA targets, viz. ACVR1C/ALK7, FZD3, IL6ST/GP130, SKIL/SNON, SMAD2 and WNT5, in the CRC spheroid cells. These mRNAs encode proteins that are reported to variously regulate the GP130/Stat, Activin/Nodal, TGF-β/SMAD or Wnt/β-catenin signaling pathways in controlling various aspects of CSC stemness. Using the CRC spheroid cell model, the novel circRNA-miRNA-mRNA axis mapped in this work forms the foundation for the elucidation of the molecular mechanisms of the complex cellular and biochemical processes that determine CSC stemness properties of cancer cells, and possibly for designing therapeutic strategies for CRC treatment by targeting CSC.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  6. Abu N, Othman N, W Hon K, Nazarie WF, Jamal R
    Biomark Med, 2020 05;14(7):525-537.
    PMID: 32462912 DOI: 10.2217/bmm-2019-0241
    Background: Finding a new target or a new drug to overcome chemoresistance is difficult due to the heterogenous nature of cancer. Meta-analysis was performed to combine the analysis of different microarray studies to get a robust discovery. Materials & methods: Herein, we analyzed three microarray datasets on combination of folinic acid, fluorouracil, and oxaliplatin drugs (FOLFOX) resistance that fit our inclusion/exclusion criteria and performed a meta-analysis using the OmiCC system. Results: We identified several deregulated genes and we discovered HNF4A as a hub gene. We performed functional validation and observed that by targeting HNF4A, HCT116 cells were more sensitive toward both oxaliplatin and 5-fluorouracil significantly. Conclusion: Our findings show that HNF4A could be a potential target in overcoming FOLFOX chemoresistance in colorectal cancer.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  7. Cheng KJ, Alshawsh MA, Mejia Mohamed EH, Thavagnanam S, Sinniah A, Ibrahim ZA
    Cell Oncol (Dordr), 2020 Apr;43(2):177-193.
    PMID: 31677065 DOI: 10.1007/s13402-019-00477-5
    BACKGROUND: In recent years, the high mobility group box-1 (HMGB1) protein, a damage-associated molecular pattern (DAMP) molecule, has been found to play multifunctional roles in the pathogenesis of colorectal cancer. Although much attention has been given to the diagnostic and prognostic values of HMGB1 in colorectal cancer, the exact functional roles of the protein as well as the mechanistic pathways involved have remained poorly defined. This systematic review aims to discuss what is currently known about the roles of HMGB1 in colorectal cancer development, growth and progression, and to highlight critical areas for future investigations. To achieve this, the bibliographic databases Pubmed, Scopus, Web of Science and ScienceDirect were systematically screened for articles from inception till June 2018, which address associations of HMGB1 with colorectal cancer.

    CONCLUSIONS: HMGB1 plays multiple roles in promoting the pathogenesis of colorectal cancer, despite a few contradicting studies. HMGB1 may differentially regulate disease-related processes, depending on the redox status of the protein in colorectal cancer. Binding of HMGB1 to various protein partners may alter the impact of HMGB1 on disease progression. As HMGB1 is heavily implicated in the pathogenesis of colorectal cancer, it is crucial to further improve our understanding of the functional roles of HMGB1 not only in colorectal cancer, but ultimately in all types of cancers.

    Matched MeSH terms: Colorectal Neoplasms/genetics*
  8. Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A
    Naunyn Schmiedebergs Arch Pharmacol, 2020 03;393(3):405-417.
    PMID: 31641820 DOI: 10.1007/s00210-019-01730-2
    The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
    Matched MeSH terms: Colorectal Neoplasms/genetics
  9. Papadimitriou N, Dimou N, Tsilidis KK, Banbury B, Martin RM, Lewis SJ, et al.
    Nat Commun, 2020 01 30;11(1):597.
    PMID: 32001714 DOI: 10.1038/s41467-020-14389-8
    Physical activity has been associated with lower risks of breast and colorectal cancer in epidemiological studies; however, it is unknown if these associations are causal or confounded. In two-sample Mendelian randomisation analyses, using summary genetic data from the UK Biobank and GWA consortia, we found that a one standard deviation increment in average acceleration was associated with lower risks of breast cancer (odds ratio [OR]: 0.51, 95% confidence interval [CI]: 0.27 to 0.98, P-value = 0.04) and colorectal cancer (OR: 0.66, 95% CI: 0.48 to 0.90, P-value = 0.01). We found similar magnitude inverse associations for estrogen positive (ER+ve) breast cancer and for colon cancer. Our results support a potentially causal relationship between higher physical activity levels and lower risks of breast cancer and colorectal cancer. Based on these data, the promotion of physical activity is probably an effective strategy in the primary prevention of these commonly diagnosed cancers.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  10. Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R, Abu N
    Sci Rep, 2019 Nov 11;9(1):16497.
    PMID: 31712601 DOI: 10.1038/s41598-019-53063-y
    Chemo-resistance is associated with poor prognosis in colorectal cancer (CRC), with the absence of early biomarker. Exosomes are microvesicles released by body cells for intercellular communication. Circular RNAs (circRNAs) are non-coding RNAs with covalently closed loops and enriched in exosomes. Crosstalk between circRNAs in exosomes and chemo-resistance in CRC remains unknown. This research aims to identify exosomal circRNAs associated with FOLFOX-resistance in CRC. FOLFOX-resistant HCT116 CRC cells (HCT116-R) were generated from parental HCT116 cells (HCT116-P) using periodic drug induction. Exosomes were characterized using transmission electron microscopy (TEM), Zetasizer and Western blot. Our exosomes were translucent cup-shaped structures under TEM with differential expression of TSG101, CD9, and CD63. We performed circRNAs microarray using exosomal RNAs from HCT116-R and HCT116-P cells. We validated our microarray data using serum samples. We performed drug sensitivity assay and cell cycle analysis to characterize selected circRNA after siRNA-knockdown. Using fold change >2 and p 
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  11. Abu N, Hon KW, Jeyaraman S, Yahaya A, Abdullah NM, Mustangin M, et al.
    Epigenomics, 2019 06;11(8):875-884.
    PMID: 31020847 DOI: 10.2217/epi-2019-0042
    Aim: Chemoresistance in colorectal cancer (CRC) has become a burden in treating the disease effectively. Circular RNAs (circRNAs) are a type of noncoding RNA that were found to be important in cellular homeostasis. The involvement of circRNAs in relation to chemoresistance in other types of cancers has also been reported. This study aims to identify the differentially expressed circRNAs between chemoresistant and chemosensitive CRC cells. Materials & methods: We developed a chemoresistant cell line model and profiled the circRNAs via microarray. We further validated the expression of two circRNAs in 25 formalin-fixed paraffin-embedded (FFPE) tissue specimens (13 nonresponders and 12 responders) via quantitative polymerase chain reaction (qPCR).  Results & conclusion: We found that there were 773 upregulated and 732 downregulated circRNAs between the chemoresistant and chemosensitive HCT-116 cells. We found that hsa_circ_32883 could be a promising biotarget.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  12. Song DSS, Leong SW, Ng KW, Abas F, Shaari K, Leong CO, et al.
    SLAS Discov, 2019 06;24(5):548-562.
    PMID: 30897027 DOI: 10.1177/2472555219831405
    DNA mismatch repair (MMR) deficiency has been associated with a higher risk of developing colorectal, endometrial, and ovarian cancer, and confers resistance in conventional chemotherapy. In addition to the lack of treatment options that work efficaciously on these MMR-deficient cancer patients, there is a great need to discover new drug leads for this purpose. In this study, we screened through a library of commercial and semisynthetic natural compounds to identify potential synthetic lethal drugs that may selectively target MLH1 mutants using MLH1 isogenic colorectal cancer cell lines and various cancer cell lines with known MLH1 status. We identified a novel diarylpentanoid analogue, 2-benzoyl-6-(2,3-dimethoxybenzylidene)-cyclohexenol, coded as AS13, that demonstrated selective toxicity toward MLH1-deficient cancer cells. Subsequent analysis suggested AS13 induced elevated levels of oxidative stress, resulting in DNA damage where only the proficient MLH1 cells were able to be repaired and hence escaping cellular death. While AS13 is modest in potency and selectivity, this discovery has the potential to lead to further drug development that may offer better treatment options for cancer patients with MLH1 deficiency.
    Matched MeSH terms: Colorectal Neoplasms/genetics
  13. Ankathil R, Mustapha MA, Abdul Aziz AA, Mohd Shahpudin SN, Zakaria AD, Abu Hassan MR, et al.
    Asian Pac J Cancer Prev, 2019 06 01;20(6):1621-1632.
    PMID: 31244280 DOI: 10.31557/APJCP.2019.20.6.1621
    AIM: To investigate the frequencies and association of polymorphic genotypes of IL-8 -251 T>A, TNF-α -308
    G>A, ICAM-1 K469E, ICAM-1 R241G, IL-6 -174 G>C, and PPAR-γ 34 C>G in modulating susceptibility risk in
    Malaysian colorectal cancer (CRC) patients. Methods: In this case-control study, peripheral blood samples of 560
    study subjects (280 CRC patients and 280 controls) were collected, DNA extracted and genotyped using PCR-RFLP
    and Allele Specific PCR. The association between polymorphic genotype and CRC susceptibility risk was determined
    using Logistic Regression analysis deriving Odds ratio (OR) and 95% CI. Results: On comparing the frequencies of
    genotypes of all single nucleotide polymorphisms ( SNPs ) in patients and controls, the homozygous variant genotypes
    IL-8 -251 AA and TNF-α -308 AA and variant A alleles were significantly higher in CRC patients. Investigation on
    the association of the variant alleles and genotypes singly, with susceptibility risk showed the homozygous variant A
    alleles and genotypes IL-8 -251 AA and TNF-α -308 AA to be at higher risk for CRC predisposition. Analysis based
    on age, gender and smoking habits showed that the polymorphisms IL8 -251 T>A and TNF – α 308 G>A contribute
    to a significantly higher risk among male and female who are more than 50 years and for smokers in this population.
    Conclusion: We observed an association between variant allele and genotypes of IL-8-251 T>A and TNF-α-308
    G>A polymorphisms and CRC susceptibility risk in Malaysian patients. These two SNPs in inflammatory response
    genes which undoubtedly contribute to individual risks to CRC susceptibility may be considered as potential genetic
    predisposition factors for CRC in Malaysian population.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  14. Ismail NI, Othman I, Abas F, H Lajis N, Naidu R
    Int J Mol Sci, 2019 May 17;20(10).
    PMID: 31108984 DOI: 10.3390/ijms20102454
    Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  15. Ramdzan AR, Abd Rahim MA, Mohamad Zaki A, Zaidun Z, Mohammed Nawi A
    Ann Glob Health, 2019 05 15;85(1).
    PMID: 31099505 DOI: 10.5334/aogh.2466
    INTRODUCTION: Colorectal cancer (CRC) is the second leading cause of cancer related death in the world after lung cancer. Early detection of CRC leads to improvement in cancer survival rate. In recent years, efforts have been made to discover a non-invasive screening marker of higher sensitivity and specificity. Fecal occult blood testing (FOBT) and genetic testing become alternative modalities to screen CRC in the population other than colonoscopy. The aim of this systematic review and meta-analysis is to determine the diagnostic accuracy, sensitivity and specificity of FOBT and genetic testing as screening tools in colorectal cancer.

    METHODS: A literature search of PubMed, ScienceDirect, and Scopus was carried out. The search strategy was restricted to human subjects and studies are published in English. Data on sensitivity and specificity were extracted and pooled. Heterogeneity was assumed at significance level of p < 0.10 and was tested by chi squared. Degree of heterogeneity was quantified using the I2 statistic, and values of less than 25% is considered as homogenous. All analyses were performed using the software Meta-Disc.

    RESULTS: A total of eleven studies were suitable for data synthesis and analysis. Five studies were analyzed for the accuracy of genetic testing, the pooled estimate for sensitivity and specificity were 71% (95% CI: 66, 75%) and 95% (95% CI: 93, 97%) respectively. Another group of studies which had been evaluated for the accuracy of FOBT, the pooled sensitivity was 31% (95% CI: 25, 38%) while the pooled specificity was 87% (95% CI: 86, 89%).

    CONCLUSIONS: FOBTs is recommended to use as population-based screening tools for colorectal cancer while genetic testing should be focusing on patients with moderate and high risk individuals.

    Matched MeSH terms: Colorectal Neoplasms/genetics*
  16. Fedirko V, Jenab M, Méplan C, Jones JS, Zhu W, Schomburg L, et al.
    Nutrients, 2019 Apr 25;11(4).
    PMID: 31027226 DOI: 10.3390/nu11040935
    Selenoprotein genetic variations and suboptimal selenium (Se) levels may contribute to the risk of colorectal cancer (CRC) development. We examined the association between CRC risk and genotype for single nucleotide polymorphisms (SNPs) in selenoprotein and Se metabolic pathway genes. Illumina Goldengate assays were designed and resulted in the genotyping of 1040 variants in 154 genes from 1420 cases and 1421 controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Multivariable logistic regression revealed an association of 144 individual SNPs from 63 Se pathway genes with CRC risk. However, regarding the selenoprotein genes, only TXNRD1 rs11111979 retained borderline statistical significance after adjustment for correlated tests (PACT = 0.10; PACT significance threshold was P < 0.1). SNPs in Wingless/Integrated (Wnt) and Transforming growth factor (TGF) beta-signaling genes (FRZB, SMAD3, SMAD7) from pathways affected by Se intake were also associated with CRC risk after multiple testing adjustments. Interactions with Se status (using existing serum Se and Selenoprotein P data) were tested at the SNP, gene, and pathway levels. Pathway analyses using the modified Adaptive Rank Truncated Product method suggested that genes and gene x Se status interactions in antioxidant, apoptosis, and TGF-beta signaling pathways may be associated with CRC risk. This study suggests that SNPs in the Se pathway alone or in combination with suboptimal Se status may contribute to CRC development.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  17. Hiew MSY, Cheng HP, Huang CJ, Chong KY, Cheong SK, Choo KB, et al.
    J Biomed Sci, 2018 Jul 19;25(1):57.
    PMID: 30025541 DOI: 10.1186/s12929-018-0461-1
    BACKGROUND: Induced pluripotency in cancer cells by ectopic expression of pluripotency-regulating factors may be used for disease modeling of cancers. MicroRNAs (miRNAs) are negative regulators of gene expression that play important role in reprogramming somatic cells. However, studies on the miRNA expression profile and the expression patterns of the mesenchymal-epithelial transition (MET)/epithelial-mesenchymal transition (EMT) genes in induced pluripotent cancer (iPC) cells are lacking.

    METHODS: iPC clones were generated from two colorectal cancer (CRC) cell lines by retroviral transduction of the Yamanaka factors. The iPC clones obtained were characterized by morphology, expression of pluripotency markers and the ability to undergo in vitro tri-lineage differentiation. Genome-wide miRNA profiles of the iPC cells were obtained by microarray analysis and bioinformatics interrogation. Gene expression was done by real-time RT-PCR and immuno-staining; MET/EMT protein levels were determined by western blot analysis.

    RESULTS: The CRC-iPC cells showed embryonic stem cell-like features and tri-lineage differentiation abilities. The spontaneously-differentiated post-iPC cells obtained were highly similar to the parental CRC cells. However, down-regulated pluripotency gene expression and failure to form teratoma indicated that the CRC-iPC cells had only attained partial pluripotency. The CRC-iPC cells shared similarities in the genome-wide miRNA expression profiles of both cancer and pluripotent embryonic stem cells. One hundred and two differentially-expressed miRNAs were identified in the CRC-iPC cells, which were predicted by bioinformatics analysis be closely involved in regulating cellular pluripotency and the expression of the MET/EMT genes, possibly via the phosphatidylinositol-3 kinases-protein kinase B (PI3K-Akt) and transforming growth factor beta (TGF-β) signaling pathways. Irregular and inconsistent expression patterns of the EMT vimentin and Snai1 and MET E-cadherin and occludin proteins were observed in the four CRC-iPC clones analyzed, which suggested an epithelial/mesenchymal hybrid phenotype in the partially reprogrammed CRC cells. MET/EMT gene expression was also generally reversed on re-differentiation, also suggesting epigenetic regulation.

    CONCLUSIONS: Our data support the elite model for cancer cell-reprogramming in which only a selected subset of cancer may be fully reprogrammed; partial cancer cell reprogramming may also elicit an epithelial-mesenchymal mixed phenotype, and highlight opportunities and challenges in cancer cell-reprogramming.

    Matched MeSH terms: Colorectal Neoplasms/genetics*
  18. Nasir SN, Abu N, Ab Mutalib NS, Ishak M, Sagap I, Mazlan L, et al.
    Clin Transl Oncol, 2018 Jun;20(6):775-784.
    PMID: 29098557 DOI: 10.1007/s12094-017-1788-x
    PURPOSE: Colorectal cancer (CRC) is one of the most widely diagnosed cancers in men and women worldwide. With the advancement of next-generation sequencing technologies, many studies have highlighted the involvement of long non-coding RNAs (lncRNAs) in cancer development. Growing evidence demonstrates that lncRNAs play crucial roles in regulating gene and protein expression and are involved in various cancers, including CRC. The field of lncRNAs is still relatively new and a lot of novel lncRNAs have been discovered, but their functional roles are yet to be elucidated. This study aims to characterize the expression and functional roles of a novel lncRNA in CRC.

    METHOD: Several methods were employed to assess the function of LOC285629 such as gene silencing, qPCR, proliferation assay, BrdU assay, transwell migration assay, ELISA and protein profiler.

    RESULTS: Via in silico analyses, we identified significant downregulation of LOC285629, a novel lncRNA, across CRC stages. LOC285629 expression was significantly downregulated in advanced stages (Stage III and IV) compared to Stage I (Kruskal-Wallis Test; p = 0.0093). Further in-house validation showed that the expression of LOC285629 was upregulated in colorectal cancer tissues and cell lines compared to the normal counterparts, but was downregulated in advanced stages. By targeting LOC285629, the viability, proliferative abilities, invasiveness and resistance of colorectal cancer cells towards 5-fluorouracil were reduced. It was also discovered that LOC285629 may regulate cancer progression by targeting several different proteins, namely survivin, BCL-xL, progranulin, PDGF-AA, enolase 2 and p70S6 K.

    CONCLUSION: Our findings suggest that LOC285629 may be further developed as a potential therapeutic target for CRC treatment.

    Matched MeSH terms: Colorectal Neoplasms/genetics
  19. Lau TP, Lian LH, Cheah PL, Looi LM, Roslani AC, Goh KL, et al.
    Eur J Cancer Prev, 2017 11;26(6):506-510.
    PMID: 28059856 DOI: 10.1097/CEJ.0000000000000336
    X-ray repair cross-complementing group 1 (XRCC1) is one of the key components in the base excision repair pathway that repairs erroneous DNA lesions and removes nonbulky base adducts for the maintenance of genome integrity. Studies have revealed that differences in individual DNA repair capacity can impact the interindividual variation in cancer susceptibility, tumour aggressiveness and treatment response. The relationship between XRCC1 and sporadic colorectal cancer (CRC) susceptibility, which is hitherto inconclusive, has been explored in many association studies of different populations. In view of the conflicting findings generated, we aimed to investigate the association between XRCC1 and genetic predisposition to CRC among Malaysians. The present case-control association study was conducted on 130 CRC patients and 212 age-matched healthy controls. The genotyping of XRCC1 Arg194Trp, Arg280His and Arg399Gln single nucleotide polymorphisms was performed with allele-specific real-time PCR approach. This was followed by basic statistical analysis on the single nucleotide polymorphisms and haplotype data obtained. No significant difference in the allele and genotype frequencies was observed between CRC patients and healthy controls (P>0.05). There was also no association observed between XRCC1 haplotypes and CRC (P>0.05). In conclusion, a positive association between XRCC1 gene polymorphisms and CRC risk was not established in our Malaysian population.
    Matched MeSH terms: Colorectal Neoplasms/genetics*
  20. Cheng AL, Cornelio G, Shen L, Price T, Yang TS, Chung IJ, et al.
    Clin Colorectal Cancer, 2017 06;16(2):e73-e88.
    PMID: 27780749 DOI: 10.1016/j.clcc.2016.08.005
    BACKGROUND: In patients with KRAS wild-type (wt) metastatic colorectal cancer (mCRC), outcomes with first-line chemotherapies are improved by adding weekly cetuximab. The APEC study investigated first-line once-every-2-weeks cetuximab plus chemotherapy for patients with KRAS wt mCRC; additional biomarker subgroups were also analyzed.

    PATIENTS AND METHODS: APEC was a nonrandomized phase 2 trial conducted in the Asia-Pacific region. Patients (n = 289) received once-every-2-weeks cetuximab with investigator's choice of chemotherapy (FOLFOX or FOLFIRI). The primary end point was best confirmed overall response rate (BORR); progression-free survival (PFS) and overall survival (OS) were secondary end points. Early tumor shrinkage (ETS) and depth of response (DpR) were also evaluated.

    RESULTS: In the KRAS wt population, BORR was 58.8%, median PFS 11.1 months, and median OS 26.8 months. Expanded RAS mutational analysis revealed that patients with RAS wt mCRC had better outcomes (BORR = 64.7%; median PFS = 13.0 months; median OS = 28.4 months). The data suggest that ETS and DpR may be associated with survival outcomes in the RAS wt population. Although this study was not designed to formally assess differences in outcome between treatment subgroups, efficacy results appeared similar for patients treated with FOLFOX and FOLFIRI. There were no new safety findings; in particular, grade 3/4 skin reactions were within clinical expectations.

    CONCLUSION: The observed activity and safety profile is similar to that reported in prior first-line pivotal studies involving weekly cetuximab, suggesting once-every-2-weeks cetuximab is effective and tolerable as first-line therapy and may represent an alternative to weekly administration.

    Matched MeSH terms: Colorectal Neoplasms/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links