Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Feng M, Tan K, Zhang H, Duan X, Li S, Ma H, et al.
    Fish Shellfish Immunol, 2023 Oct;141:109059.
    PMID: 37678479 DOI: 10.1016/j.fsi.2023.109059
    High stocking density has been regarded as an adverse factor in bivalve aquaculture. However, its subsequent molecular response to pathogenic bacteria has been little studied. In order to study the question, a novel MyD88 was first cloned using adult noble scallops Chlamys nobilis (CnMyD88), and its tissue distribution was investigated. Then, 1860 juvenile scallops were divided into two groups with two initial densities of high density (200 individuals/layer, HD) and normal density (110 individuals/layer, ND) and in-situ cultured for three months, in which their growth, survival, and the differential expression of CnMyD88 were examined, respectively. Finally, scallops were injected with the Vibrio parahaemolyticus to assess the temporal expression of CnMyD88. As the results show, CnMyD88 cDNA has a full length of 2241 bp and contains an 1107 bp ORF that encodes a 368-derived protein. It was widely expressed in examined tissues with a significantly higher level in hemolymph, intestine, mantle, and gonad than others. Besides, the HD group showed lower growth (0.39 ± 0.05 mm/day) and survival (37.00 ± 8.49%) than the ND group (0.55 ± 0.02 mm/day and 76.82 ± 5.78%). More importantly, the HD group exhibited significantly lower expression levels of CnMyD88 in their examined tissues than the ND group. After V. parahaemolyticus challenging, CnMyD88 had significantly lower expression levels in the scallops from the HD group than that of the scallops from the ND group at 6th, 24th, and 36th. The present results indicated that high stocking density not only made adverse impacts on growth and survival but also may induce immunosuppression in the noble scallop. Therefore, appropriate low stocking density may be worth considering to adopt in scallop aquaculture.
    Matched MeSH terms: DNA, Complementary/genetics
  2. Lim FH, Rasid OA, Idris AS, As'wad AWM, Vadamalai G, Parveez GKA, et al.
    Mol Biol Rep, 2023 Mar;50(3):2367-2379.
    PMID: 36580194 DOI: 10.1007/s11033-022-08131-4
    BACKGROUND: The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today.

    METHODS AND RESULTS: This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm.

    CONCLUSION: This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.

    Matched MeSH terms: DNA, Complementary/genetics
  3. Murulitharan K, Yusoff K, Omar AR, Peeters BPH, Molouki A
    Curr Microbiol, 2021 Apr;78(4):1458-1465.
    PMID: 33660046 DOI: 10.1007/s00284-021-02421-z
    Rescue of (-)ssRNA viruses involves the sequential assembly and cloning of the full-length cDNA, which is often a challenging and time-consuming process. The objective of this study was to develop a novel method to rapidly clone the full-length cDNA of a very virulent NDV by only one assembly step. A completely synthetic 15 kb cDNA of a Malaysian genotype VIII NDV known as strain AF2240-I with additional flanking BsmBI sites was synthesised. However, to completely follow the rule-of-six, the additional G residues that are traditionally added after the T7 promoter transcription initiation site were not synthesised. The synthetic fragment was then cloned into low-copy number transcription vector pOLTV5-phiX between the T7 promoter and HDV Rz sequences through digestion with BbsI. The construct was co-transfected with helper plasmids into BSRT7/5 cells. A recombinant NDV called rAF was successfully rescued using transfection supernatant harvested as early as 16 h post-transfection. Virus from each passage showed an intracerebral pathogenicity index (ICPI) and a mean death time (MDT) similar to the parent strain AF2240-I. Moreover, rAF possessed an introduced mutation which was maintained for several passages. The entire rescue using the one-step assembly procedure was completed within a few weeks, which is extremely fast compared to previously used methods.
    Matched MeSH terms: DNA, Complementary/genetics
  4. Wang LM, Bu HY, Song FB, Zhu WB, Fu JJ, Dong ZJ
    PMID: 31310814 DOI: 10.1016/j.cbpa.2019.110529
    Red tilapia has become more popular for aquaculture production in China in recent years. However, the pigmentation differentiation that has resulted from the process of genetic breeding and skin color variation during the overwintering period are the main problems limiting the development of commercial culture. The genetic basis of skin color differentiation is still not understood. Solute carrier family 7 member 11 (slc7a11) has been identified to be a critical genetic regulator of pheomelanin synthesis in the skin of mammals. However, little information is available about its molecular characteristics, expression, location and function in skin color differentiation of fish. In this study, three complete cDNA sequences (2159 bp, 2190 bp and 2249 bp) of slc7a11 were successfully isolated from Malaysian red tilapia, encoding polypeptides of 492, 525 and 492 amino acids respectively. Quantitative real-time PCR demonstrated that slc7a11 mRNA expression is high in the ventral skin of PR (pink with scattered red spots) fish. Immunofluorescence analysis revealed that xCT (the protein encoded by slc7a11) was concentrated mainly in the cytoplasm and nucleus of both the dorsal and ventral skin cells of fish. After RNA interference of slc7a11, slc7a11 and cbs mRNA expressions decreased, but the tyr mRNA expression increased in the skin of fish. Results suggest that slc7a11 plays an important role in skin color formation and differentiation of red tilapia through the melanogenesis pathway.
    Matched MeSH terms: DNA, Complementary/genetics
  5. Dong AN, Pan Y, Palanisamy UD, Yiap BC, Ahemad N, Ong CE
    Appl Biochem Biotechnol, 2018 Sep;186(1):132-144.
    PMID: 29524040 DOI: 10.1007/s12010-018-2728-0
    Genetic polymorphism of the cytochrome P450 (CYP) genes particularly affects CYP2D6 and CYP2C19 to a functionally relevant extent, and it is therefore crucial to elucidate the enzyme kinetic and molecular basis for altered catalytic activity of these allelic variants. This study explored the expression and function of the reported alleles CYP2D6*2, CYP2D6*10, CYP2D6*17, CYP2C19*23, CYP2C19*24, and CYP2C19*25 with respect to gene polymorphisms. Site-directed mutagenesis (SDM) was carried out to generate these six alleles. After DNA sequencing, the CYP2D6 and CYP2C19 wild types alongside with their alleles were each independently co-expressed with NADPH-CYP oxidoreductase (OxR) in Escherichia coli. The expressed proteins were analyzed using Western blotting, reduced carbon monoxide (CO) difference spectral scanning, and cytochrome c reductase assay. Results from Western blot revealed the presence of all CYP wild-type and allelic proteins in E. coli membrane fractions. The reduced CO difference spectra scanning presented the distinct peak of absorbance at 450 nm, and the cytochrome c reductase assay has confirmed that spectrally active OxR was expressed in each protein preparation. As a conclusion, the results obtained from this study have proven the CYP variants to be immunoreactive and spectrally active and are suitable for use to examine biotransformation and interaction mechanism of the enzymes.
    Matched MeSH terms: DNA, Complementary/genetics
  6. Loganathan K, Moriya S, Sivalingam M, Ng KW, Parhar IS
    J. Chem. Neuroanat., 2017 Dec;86:92-99.
    PMID: 29074372 DOI: 10.1016/j.jchemneu.2017.10.004
    kcnk10a has been predicted in zebrafish to be a member of the two-pore domain potassium ion (K+) channel-related K+ (TREK) channel family known as a thermoreceptor. Since reproduction is affected by temperature, Kcnk10a could be involved in the regulation of reproduction. However, expression of kcnk10a in the zebrafish brain and association with reproduction has not been identified. In this study, the full length sequence and localization of kcnk10a in the brain was investigated and gene expressions of the TREK channel family were examined to investigate association with reproduction. We initially identified the full length cDNA sequence of kcnk10a using Rapid Amplification of cDNA Ends and localization in the zebrafish brain using in situ hybridization. Furthermore, we examined the gene expression differences of kcnk2b, kcnk10a and kcnk10b mRNA between genders as well as developmental stages by real-time PCR. The deduced amino acid sequence of the identified kcnk10a mRNA contains highly conserved two pore domains and four transmembrane regions and was higher similarity to zebrafish Kcnk10b than zebrafish Kcnk2a and 2b. kcnk10a mRNA was widely distributed in the brain such as the preoptic area, hypothalamus and the midbrain. kcnk10a mRNA expression exhibited significant difference between mature male and female, and increase during puberty. Kcnk10a could be involved in the regulation of reproductive function.
    Matched MeSH terms: DNA, Complementary/genetics
  7. Kanniappan P, Ahmed SA, Rajasekaram G, Marimuthu C, Ch'ng ES, Lee LP, et al.
    J Cell Mol Med, 2017 10;21(10):2276-2283.
    PMID: 28756649 DOI: 10.1111/jcmm.13148
    Technological advances in RNA biology greatly improved transcriptome profiling during the last two decades. Besides the discovery of many small RNAs (sRNA) that are involved in the physiological and pathophysiological regulation of various cellular circuits, it becomes evident that the corresponding RNA genes might also serve as potential biomarkers to monitor the progression of disease and treatment. sRNA gene candidate npcTB_6715 was previously identified via experimental RNomic (unpublished data), and we report its application as potential biomarker for the detection of Mycobacterium tuberculosis (MTB) in patient samples. For proof of principle, we developed a multiplex PCR assay and report its validation with 500 clinical cultures, positive for Mycobacteria. The analysis revealed 98.9% sensitivity, 96.1% specificity, positive and negative predictive values of 98.6% and 96.8%, respectively. These results underscore the diagnostic value of the sRNA gene as diagnostic marker for the specific detection of MTB in clinical samples. Its successful application and the general ease of PCR-based detection compared to standard bacterial culture techniques might be the first step towards 'point-of-care' diagnostics of Mycobacteria. To the best of our knowledge, this is the first time for the design of diagnostic applications based on sRNA genes, in Mycobacteria.
    Matched MeSH terms: DNA, Complementary/genetics
  8. Donald JA, Hamid NKA, McLeod JL
    Gen Comp Endocrinol, 2017 04 01;244:201-208.
    PMID: 27102941 DOI: 10.1016/j.ygcen.2016.04.015
    Water deprivation of the Spinifex hopping mouse, Notomys alexis, induced a biphasic pattern of food intake with an initial hypophagia that was followed by an increased, and then sustained food intake. The mice lost approximately 20% of their body mass and there was a loss of white adipose tissue. Stomach ghrelin mRNA was significantly higher at day 2 of water deprivation but then returned to the same levels as water-replete (day 0) mice for the duration of the experiment. Plasma ghrelin was unaffected by water deprivation except at day 10 where it was significantly increased. Plasma leptin levels decreased at day 2 and day 5 of water deprivation, and then increased significantly by the end of the water deprivation period. Water deprivation caused a significant decrease in skeletal muscle leptin mRNA expression at days 2 and 5, but then it returned to day 0 levels by day 29. In the hypothalamus, water deprivation caused a significant up-regulation in both ghrelin and neuropeptide Y mRNA expression, respectively. In contrast, hypothalamic GHSR1a mRNA expression was significantly down-regulated. A significant increase in LepRb mRNA expression was observed at days 17 and 29 of water deprivation. This study demonstrated that the sustained food intake in N. alexis during water deprivation was uncoupled from peripheral appetite-regulating signals, and that the hypothalamus appears to play an important role in regulating food intake; this may contribute to the maintenance of fluid balance in the absence of free water.
    Matched MeSH terms: DNA, Complementary/genetics
  9. Junaid QO, Khaw LT, Mahmud R, Ong KC, Lau YL, Borade PU, et al.
    Parasite, 2017;24:38.
    PMID: 29034874 DOI: 10.1051/parasite/2017040
    BACKGROUND: As the quest to eradicate malaria continues, there remains a need to gain further understanding of the disease, particularly with regard to pathogenesis. This is facilitated, apart from in vitro and clinical studies, mainly via in vivo mouse model studies. However, there are few studies that have used gerbils (Meriones unguiculatus) as animal models. Thus, this study is aimed at characterizing the effects of Plasmodium berghei ANKA (PbA) infection in gerbils, as well as the underlying pathogenesis.

    METHODS: Gerbils, 5-7 weeks old were infected by PbA via intraperitoneal injection of 1 × 106 (0.2 mL) infected red blood cells. Parasitemia, weight gain/loss, hemoglobin concentration, red blood cell count and body temperature changes in both control and infected groups were monitored over a duration of 13 days. RNA was extracted from the brain, spleen and whole blood to assess the immune response to PbA infection. Organs including the brain, spleen, heart, liver, kidneys and lungs were removed aseptically for histopathology.

    RESULTS: Gerbils were susceptible to PbA infection, showing significant decreases in the hemoglobin concentration, RBC counts, body weights and body temperature, over the course of the infection. There were no neurological signs observed. Both pro-inflammatory (IFNγ and TNF) and anti-inflammatory (IL-10) cytokines were significantly elevated. Splenomegaly and hepatomegaly were also observed. PbA parasitized RBCs were observed in the organs, using routine light microscopy and in situ hybridization.

    CONCLUSION: Gerbils may serve as a good model for severe malaria to further understand its pathogenesis.

    Matched MeSH terms: DNA, Complementary/genetics
  10. Moriya S, Chourasia D, Ng KW, Khel NB, Parhar IS
    J. Chem. Neuroanat., 2016 11;77:24-29.
    PMID: 27134039 DOI: 10.1016/j.jchemneu.2016.04.005
    Immediate early response (IER) 2 gene, a member of the IER family, is a gene of unknown function which is affected by external stimuli in the brain. In the present study, the full length sequence and localization of medaka (Oryzias latipes) ier2 was investigated in the brain to understand the functions of Ier2 in the future studies. The full length sequence of medaka ier2 was identified using a 3'-, 5'- rapid amplification of cDNA ends method, and distribution in the brain was identified using in situ hybridization. The identified full length ier2 mRNA consisted of 939 nucleotides spanning along 1 exon. The deduced amino acid sequence consisted of 171 amino acid residues which contains a highly conserved sequence, nuclear localization signal. ier2 mRNA was distributed in the telencephalon, midbrain and the hypothalamus. This highly conserved primary response gene Ier2 can be used to visualize and map functionally activated neuronal circuitry in the brain of medaka.
    Matched MeSH terms: DNA, Complementary/genetics
  11. Chaurasia MK, Ravichandran G, Nizam F, Arasu MV, Al-Dhabi NA, Arshad A, et al.
    Fish Shellfish Immunol, 2016 Jul;54:353-63.
    PMID: 27109581 DOI: 10.1016/j.fsi.2016.04.031
    This study reports the comprehensive comparative information of two different detoxification enzymes such as glutathione S-transferases (GSTs) delta and kappa from freshwater giant prawn Macrobrachium rosenbergii (designated as MrGSTD and MrGSTK) by investigating their in-silico characters and mRNA modulation against various biotic and abiotic oxidative stressors. The physico-chemical properties of these cDNA and their polypeptide structure were analyzed using various bioinformatics program. The analysis indicated the variation in size of the polypeptides, presence or absence of domains and motifs and structure. Homology and phylogenetic analysis revealed that MrGSTD shared maximum identity (83%) with crustaceans GST delta, whereas MrGSTK fell in arthropods GST kappa. It is interesting to note that MrGSTD and MrGSTK shared only 21% identity; it indicated their structural difference. Structural analysis indicated that MrGSTD to be canonical dimer like shape and MrGSTK appeared to be butterfly dimer like shape, in spite of four β-sheets being conserved in both GSTs. Tissue specific gene expression analysis showed that both MrGSTD and MrGSTK are highly expressed in immune organs such as haemocyte and hepatopancreas, respectively. To understand the role of mRNA modulation of MrGSTD and MrGSTK, the prawns were inducted with oxidative stressors such as bacteria (Vibrio harveyi), virus [white spot syndrome virus (WSSV)] and heavy metal, cadmium (Cd). The analysis revealed an interesting fact that both MrGSTD and MrGSTK showed higher (P 
    Matched MeSH terms: DNA, Complementary/genetics
  12. Chaurasia MK, Nizam F, Ravichandran G, Arasu MV, Al-Dhabi NA, Arshad A, et al.
    Fish Shellfish Immunol, 2016 Jan;48:228-38.
    PMID: 26631804 DOI: 10.1016/j.fsi.2015.11.034
    Considering the importance of heat shock proteins (HSPs) in the innate immune system of prawn, a comparative molecular approach was proposed to study the crustacean large HSPs 60, 70 and 90. Three different large HSPs were identified from freshwater prawn Macrobrachium rosenbergii (Mr) cDNA library during screening. The structural and functional characteristic features of HSPs were studied using various bioinformatics tools. Also, their gene expression and mRNA regulation upon various pathogenic infections was studied by relative quantification using 2(-ΔΔCT) method. MrHSP60 contains a long chaperonin 60 domain at 46-547 which carries a chaperonin 60 signature motif between 427 and 438, whereas MrHSP70 contains a long HSP70 domain at 21-624 and MrHSP90 carries a HSP90 domain at 188-719. The two dimensional analysis showed that MrHSP60 contains more amino acids (52%) in helices, whereas MrHSP70 (40.6%) and MrHSP90 (51.8%) carried more residues in coils. Gene expression results showed significant (P 
    Matched MeSH terms: DNA, Complementary/genetics
  13. Abdul Hamid NK, Carmona-Antoñanzas G, Monroig Ó, Tocher DR, Turchini GM, Donald JA
    PLoS One, 2016;11(3):e0150770.
    PMID: 26943160 DOI: 10.1371/journal.pone.0150770
    Rainbow trout, Oncorhynchus mykiss, are intensively cultured globally. Understanding their requirement for long-chain polyunsaturated fatty acids (LC-PUFA) and the biochemistry of the enzymes and biosynthetic pathways required for fatty acid synthesis is important and highly relevant in current aquaculture. Most gnathostome vertebrates have two fatty acid desaturase (fads) genes with known functions in LC-PUFA biosynthesis and termed fads1 and fads2. However, teleost fish have exclusively fads2 genes. In rainbow trout, a fads2 cDNA had been previously cloned and found to encode an enzyme with Δ6 desaturase activity. In the present study, a second fads2 cDNA was cloned from the liver of rainbow trout and termed fads2b. The full-length mRNA contained 1578 nucleotides with an open reading frame of 1365 nucleotides that encoded a 454 amino acid protein with a predicted molecular weight of 52.48 kDa. The predicted Fads2b protein had the characteristic traits of the microsomal Fads family, including an N-terminal cytochrome b5 domain containing the heme-binding motif (HPPG), histidine boxes (HDXGH, HFQHH and QIEHH) and three transmembrane regions. The fads2b was expressed predominantly in the brain, liver, intestine and pyloric caeca. Expression of the fasd2b in yeast generated a protein that was found to specifically convert eicosatetraenoic acid (20:4n-3) to eicosapentaenoic acid (20:5n-3), and therefore functioned as a Δ5 desaturase. Therefore, rainbow trout have two fads2 genes that encode proteins with Δ5 and Δ6 desaturase activities, respectively, which enable this species to perform all the desaturation steps required for the biosynthesis of LC-PUFA from C18 precursors.
    Matched MeSH terms: DNA, Complementary/genetics
  14. Tan YC, Wong MY, Ho CL
    Plant Physiol Biochem, 2015 Nov;96:296-300.
    PMID: 26322853 DOI: 10.1016/j.plaphy.2015.08.014
    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system.
    Matched MeSH terms: DNA, Complementary/genetics*
  15. Ravanfar SA, Aziz MA, Saud HM, Abdullah JO
    Curr Genet, 2015 Nov;61(4):653-63.
    PMID: 25986972 DOI: 10.1007/s00294-015-0494-x
    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.
    Matched MeSH terms: DNA, Complementary/genetics*
  16. Wang LY, Wang YS, Cheng H, Zhang JP, Yeok FS
    Ecotoxicology, 2015 Oct;24(7-8):1705-13.
    PMID: 26044931 DOI: 10.1007/s10646-015-1502-0
    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.
    Matched MeSH terms: DNA, Complementary/genetics
  17. Chaurasia MK, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, et al.
    Microbiol Res, 2015 Jan;170:78-86.
    PMID: 25271126 DOI: 10.1016/j.micres.2014.08.011
    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal peptide can be recommended for the development of an antimicrobial agent.
    Matched MeSH terms: DNA, Complementary/genetics
  18. Vakhshiteh F, Allaudin ZN, Lila MA, Abbasiliasi S, Ajdari Z
    Mol Biotechnol, 2015 Jan;57(1):75-83.
    PMID: 25218408 DOI: 10.1007/s12033-014-9803-8
    Transplantation of islets of Langerhans that have been isolated from whole pancreas is an attractive alternative for the reversal of Type 1 diabetes. However, in vitro culture of isolated pancreatic islets has been reported to cause a decrease in glucose response over time. Hence, the improvement in islet culture conditions is an important goal in islet transplantation. Heme Oxygenase-1 (HO-1) is a stress protein that has been described as an inducible protein with the capacity of preventing apoptosis and cytoprotection via radical scavenging. Therefore, this study was aimed to assess the influence of endogenous HO-1 gene transfer on insulin secretion of caprine islets. The full-length cDNA sequence of Capra hircus HO-1 was determined using specific designed primers and rapid amplification of cDNA ends of pancreatic tissue. The HO-1 cDNA was then cloned into the prokaryotic expression vectors and transfected into caprine islets using lipid carriers. Efficiency of lipid carriers to transfect caprine islets was determined by flow cytometry. Insulin secretion assay was carried out by ovine insulin ELISA. The finding demonstrated that endogenous HO-1 gene transfer could improve caprine islet function in in vitro culture. Consequently, strategies using HO-1 gene transfer to islets might lead to better outcome in islet transplantation.
    Matched MeSH terms: DNA, Complementary/genetics
  19. Bhatt P, Chaurasia MK, Palanisamy R, Kumaresan V, Arasu A, Sathyamoorthi A, et al.
    Fish Shellfish Immunol, 2014 Aug;39(2):245-53.
    PMID: 24861891 DOI: 10.1016/j.fsi.2014.05.019
    CXCR3 is a CXC chemokine receptor 3 which binds to CXC ligand 4 (CXCL4), 9, 10 and 11. CXC chemokine receptor 3a (CXCR3a) is one of the splice variants of CXCR3. It plays crucial role in defense and other physiological processes. In this study, we report the molecular cloning, characterization and gene expression of CXCR3a from striped murrel Channa striatus (Cs). The full length CsCXCR3a cDNA sequence was obtained from the constructed cDNA library of striped murrel by cloning and sequencing using an internal sequencing primer. The full length sequence is 1425 nucleotides in length including an open reading frame of 1086 nucleotides which is encoded with a polypeptide of 361 amino acids (mol. wt. 40 kDa). CsCXCR3a domain analysis showed that the protein contains a G protein coupled receptor between 55 and 305 along with its family signature at 129-145. The transmembrane prediction analysis showed that CsCXCR3a protein contains 7 transmembrane helical regions at 34-65, 80-106, 113-146, 154-181, 208-242, 249-278 and 284-308. The 'DRY' motif from CsCXCR3a protein sequence at (140)Asp-(141)Arg-(142)Tyr which is responsible for G-protein binding is also highly conserved with CXCR3 from other species. Phylogenetic tree showed that the CXC chemokine receptors 3, 4, 5 and 6, each formed a separate clade, but 1 and 2 were clustered together, which may be due to the high similarity between these receptors. The predicted 3D structure revealed cysteine residues, which are responsible for 'CXC' motif at 116 and 198. The CsCXR3a transcript was found to be high in kidney, further its expression was up-regulated by sodium nitrite acute toxicity exposure, fungal, bacterial and poly I:C challenges. Overall, these results supported the active involvement of CsCXCR3a in inflammatory process of striped murrel during infection. However, further study is necessary to explore the striped murrel chemokine signaling pathways and their roles in defense system.
    Matched MeSH terms: DNA, Complementary/genetics
  20. Lazouskaya NV, Palombo EA, Poh CL, Barton PA
    J Virol Methods, 2014 Mar;197:67-76.
    PMID: 24361875 DOI: 10.1016/j.jviromet.2013.12.005
    Enterovirus 71 (EV 71) is a causative agent of mild Hand Foot and Mouth Disease but is capable of causing severe complications in the CNS in young children. Reverse genetics technology is currently widely used to study the pathogenesis of the virus. The aim of this work was to determine and evaluate the factors which can contribute to infectivity of EV 71 RNA transcripts in vitro. Two strategies, overlapping RT-PCR and long distance RT-PCR, were employed to obtain the full-length genome cDNA clones of the virus. The length of the poly(A) tail and the presence of non-viral 3'-terminal sequences were studied in regard to their effects on infectivity of the in vitro RNA transcripts of EV 71 in cell culture. The data revealed that only cDNA clones obtained after long distance RT-PCR were infectious. No differences were observed in virus titres after transfection with in vitro RNA harbouring a poly(A) tail of 18 or 30 adenines in length, irrespective of the non-viral sequences at the 3'-terminus.
    Matched MeSH terms: DNA, Complementary/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links