Displaying publications 1 - 20 of 111 in total

Abstract:
Sort:
  1. Fomukong NG, Tang TH, al-Maamary S, Ibrahim WA, Ramayah S, Yates M, et al.
    Tuber. Lung Dis., 1994 Dec;75(6):435-40.
    PMID: 7718832 DOI: 10.1016/0962-8479(94)90117-1
    DNA fingerprinting with the insertion sequence IS6110 (also known as IS986) has become established as a major tool for investigating the spread of tuberculosis. Most strains of Mycobacterium tuberculosis have multiple copies of IS6110, but a small minority carry a single copy only. We have examined selected strains from Malaysia, Tanzania and Oman, in comparison with M. bovis isolates and BCG strains carrying one or two copies of IS6110. The insertion sequence appears to be present in the same position in all these strains, which suggests that in these organisms the element is defective in transposition and that the loss of transposability may have occurred at an early stage in the evolution of the M. tuberculosis complex.
    Matched MeSH terms: DNA Fingerprinting*
  2. Koay AS, Jegathesan M, Rohani MY, Cheong YM
    PMID: 9322288
    Strains of Salmonella typhi implicated in two separate cases of laboratory acquired infection from patients and the medical laboratory technologists who processed the patients' samples were analysed by pulsed-field gel electrophoresis. Although all four isolates were of bacteriophage type E1, PFGE was able to demonstrate that the strains responsible for the two laboratory acquired cases were not genetically related. The PFGE patterns of the isolates from the MLTs were found to be identical to those of the corresponding patients after digestion with restriction enzyme AvrII. This provided genetic as well as epidemiological evidence for the source of the laboratory acquired infections.
    Matched MeSH terms: DNA Fingerprinting
  3. Schmid J, Herd S, Hunter PR, Cannon RD, Yasin MSM, Samad S, et al.
    Microbiology (Reading), 1999 Sep;145 ( Pt 9):2405-2413.
    PMID: 10517593 DOI: 10.1099/00221287-145-9-2405
    Epidemiological studies, using the probe Ca3, have shown that in a given patient population a single cluster of genetically related Candida albicans isolates usually predominates. The authors have investigated whether these local clusters are part of a single group, geographically widespread and highly prevalent as an aetiological agent of various types of candidiasis. An unrooted neighbour-joining tree of 266 infection-causing C. albicans isolates (each from a different individual) from 12 geographical regions in 6 countries was created, based on genetic distances generated by Ca3 fingerprinting. Thirty-seven per cent of all isolates formed a single genetically homogeneous cluster (cluster A). The remainder of isolates were genetically diverse. Using the maximum branch length within cluster A as a cut-off, they could be divided into 37 groups, whose prevalence ranged between 0.3% and 9%. Strains from cluster A were highly prevalent in all but one geographical region, with a mean prevalence across all regions of 41%. When isolates were separated into groups based on patient characteristics or type of infection, strains from cluster A had a prevalence exceeding 27% in each group, and their mean prevalence was 43% across all patient characteristics. These data provide evidence that cluster A constitutes a general-purpose genotype, which is geographically widespread and acts as a predominant aetiological agent of all forms of candidiasis in all categories of patients surveyed.
    Matched MeSH terms: DNA Fingerprinting
  4. Radu S, Ho YK, Lihan S, Yuherman, Rusul G, Yasin RM, et al.
    Epidemiol Infect, 1999 Oct;123(2):225-32.
    PMID: 10579441
    A total of 31 strains of Vibrio cholerae O1 (10 from outbreak cases and 7 from surface water) and non-O1 (4 from clinical and 10 from surface water sources) isolated between 1993 and 1997 were examined with respect to presence of cholera enterotoxin (CT) gene by PCR-based assays, resistance to antibiotics, plasmid profiles and random amplified polymorphic DNA (RAPD) analysis. All were resistant to 9 or more of the 17 antibiotics tested. Identical antibiotic resistance patterns of the isolates may indicate that they share a common mode of developing antibiotic resistance. Furthermore, the multiple antibiotic resistance indexing showed that all strains tested originated from high risk contamination. Plasmid profile analysis by agarose gel electrophoresis showed the presence of small plasmids in 12 (7 non-O1 and 5 O1 serotypes) with sizes ranging 1.3-4.6 MDa. The CT gene was detected in all clinical isolates but was present in only 14 (6 O1 serotype and 8 non-O1 serotype) isolates from environmental waters. The genetic relatedness of the clinical and environmental Vibrio cholerae O1 and non-O1 strains was investigated by RAPD fingerprinting with four primers. The four primers generated polymorphisms in all 31 strains of Vibrio cholerae tested, producing bands ranging from < 250 to 4500 bp. The RAPD profiles revealed a wide variability and no correlation with the source of isolation. This study provides evidence that Vibrio cholerae O1 and non-O1 have significant public health implications.
    Matched MeSH terms: DNA Fingerprinting
  5. Radu S, Lihan S, Idris A, Ling OW, Al-Haddawi MH, Rusul G
    PMID: 10928372
    Seven isolates of Burkholderia pseudomallei from cases of melioidosis in human (2 isolates) and animal (2 isolates), cat (one isolate) and from soil samples (2 isolates) were examined for in vitro sensitivity to 14 antimicrobial agents and for presence of plasmid DNA. Randomly amplified polymorphic DNA (RAPD) analysis was used to type the isolates, using two arbitrary primers. All isolates were sensitive to chloramphenicol, kanamycin, carbenicillin, rifampicin, enrofloxacin, tetracycline and sulfamethoxazole-trimethoprim. No plasmid was detected in all the isolates tested. RADP fingerprinting demonstrated genomic relationship between isolates, which provides an effective method to study the epidemiology of the isolates examined.
    Matched MeSH terms: DNA Fingerprinting
  6. Park YK, Bai GH, Kim SJ
    J Clin Microbiol, 2000 Jan;38(1):191-7.
    PMID: 10618086
    A total of 422 Mycobacterium tuberculosis isolates from eight countries were subjected to IS6110 and IS1081 DNA fingerprinting by means of restriction fragment analysis to characterize M. tuberculosis strains from each country. Chinese, Mongolian, Hong Kong, Filipino, and Korean isolates had comparatively more copies of IS6110 (proportion with eight or more copies; 95% +/- 5%), while Thai, Malaysian, and Vietnamese isolates had fewer copies (proportion with eight or more copies, 60% +/- 4%). We found a number of novel IS1081 types in this study. One IS1081 type was present in 56% of Filipino isolates, had a specific 6.6-kb PvuII fragment in its IS6110 DNA fingerprint, and was termed the "Filipino family." The IS1081 types of Thai isolates had interposing characteristics between the characteristics of northeastern Asian and southeastern Asian IS1081 types. A 1.3-kb single-copy IS6110 fragment was found only in Vietnamese M. tuberculosis isolates. Although M. tuberculosis isolates from each country had comparatively similar characteristics depending on the classification factor, each country's isolates showed characteristic DNA fingerprints and differed slightly from the isolates from the other countries in either the mode number of IS6110 copies or the distribution of IS1081 types.
    Matched MeSH terms: DNA Fingerprinting
  7. Chong LK, Tan SG, Yusoff K, Siraj SS
    Biochem Genet, 2000 Apr;38(3-4):63-76.
    PMID: 11100266
    This work represents the first application of the amplified fragment length polymorphism (AFLP) technique and the random amplified polymorphic DNA (RAPD) technique in the study of genetic variation within and among five geographical populations of M. nemurus. Four AFLP primer combinations and nine RAPD primers detected a total of 158 and 42 polymorphic markers, respectively. The results of AFLP and RAPD analysis provide similar conclusions as far as the population clustering analysis is concerned. The Sarawak population, which is located on Borneo Island, clustered by itself and was thus isolated from the rest of the populations located in Peninsular Malaysia. Both marker systems revealed high genetic variability within the Universiti Putra Malaysia (UPM) and Sarawak populations. Three subgroups each from the Kedah, Perak, and Sarawak populations were detected by AFLP but not by RAPD. Unique AFLP fingerprints were also observed in some unusual genotypes sampled in Sarawak. This indicates that AFLP may be a more efficient marker system than RAPD for identifying genotypes within populations.
    Matched MeSH terms: DNA Fingerprinting
  8. Nair S, Schreiber E, Thong KL, Pang T, Altwegg M
    J Microbiol Methods, 2000 Jun;41(1):35-43.
    PMID: 10856775
    Amplified fragment length polymorphism (AFLP) is a recently developed, PCR-based high resolution fingerprinting method that is able to generate complex banding patterns which can be used to delineate intraspecific genetic relationships among bacteria. In the present study, AFLP was evaluated for its usefulness in the molecular typing of Salmonella typhi in comparison to ribotyping and pulsed-field gel electrophoresis (PFGE). Six S. typhi isolates from diverse geographic areas (Malaysia, Indonesia, India, Chile, Papua New Guinea and Switzerland) gave unique, heterogeneous profiles when typed by AFLP, a result which was consistent with ribotyping and PFGE analysis. In a further study of selected S. typhi isolates from Papua New Guinea which caused fatal and non-fatal disease previously shown to be clonally related by PFGE, AFLP discriminated between these isolates but did not indicate a linkage between genotype with virulence. We conclude that AFLP (discriminatory index=0.88) has a higher discriminatory power for strain differentiation among S. typhi than ribotyping (DI=0.63) and PFGE (DI=0.74).
    Matched MeSH terms: DNA Fingerprinting/methods*
  9. Norazah A, Liew SM, Kamel AG, Koh YT, Lim VK
    Singapore Med J, 2001 Jan;42(1):15-9.
    PMID: 11361232
    To determine and compare the pulsed-field gel electrophoresis (PFGE) patterns of endemic MRSA strains in 2 major Malaysian hospitals and to compare the PFGE patterns with antibiotypes of the strains studied.
    Matched MeSH terms: DNA Fingerprinting/methods*
  10. Lim KB, Jeevan NH, Jaya P, Othman MI, Lee YH
    Forensic Sci Int, 2001 Jun 01;119(1):109-12.
    PMID: 11348801
    Allele frequencies for the nine STRs genetic loci included in the AmpFlSTR Profiler kit were obtained from samples of unrelated individuals comprising 139-156 Malays, 149-153 Chinese and 132-135 Indians, residing in Malaysia.
    Matched MeSH terms: DNA Fingerprinting/instrumentation; DNA Fingerprinting/methods
  11. Radu S, Ling OW, Rusul G, Karim MI, Nishibuchi M
    J Microbiol Methods, 2001 Aug;46(2):131-9.
    PMID: 11412923
    Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.
    Matched MeSH terms: DNA Fingerprinting
  12. Alfizah H, Norazah A, Nordiah AJ, Lim VKE
    Med J Malaysia, 2002 Sep;57(3):319-28.
    PMID: 12440272 MyJurnal
    Methicillin-resistant Staphylococcus aureus (MRSA) has been prevalent in our hospital over the last three years. Differentiation among MRSA strains by DNA typing in addition to antibiotic resistance pattern surveillance is crucial in order to implement infection control measures. The aim of this study was to characterize MRSA isolates from patients admitted to Hospital Universiti Kebangsaan Malaysia (HUKM) by phenotypic (analyses of antibiotic susceptibility pattern) and genotypic (PFGE) techniques to determine the genetic relatedness of the MRSA involved and to identify endemic clonal profiles of MRSA circulating in HUKM. Seventy one MRSA strains collected between January to March 2000 from patients from various wards in HUKM were tested for antimicrobial resistance and typed by pulsed-field gel electrophoresis (PFGE). Four major types of PFGE patterns were identified (A, B, C and D) among MRSA strains. Two predominant PFGE types were recognised, Type A (59.2%) and Type B (33.8%). Most of these strains were isolated from ICU, Surgical wards and Medical wards. MRSA strains with different PFGE patterns appeared to be widespread among wards. Strains with the same antibiotype could be of different PFGE types. Most of isolates were resistant to ciprofloxacin, erythromycin, gentamicin and penicillin. One isolate with a unique PFGE pattern Type D and susceptible to gentamicin was identified as a different clone. Some isolates obtained from the same patient showed different PFGE subtypes suggesting that these patients were infected/colonized with multiple MRSA strains. PFGE analysis suggests that MRSA strains with different PFGE types was propagated within our hospital. The relationship between antibiotic susceptibility and PFGE patterns was independent. The ability of PFGE technique in differentiating our MRSA strains make it a method of choice for investigating the source, transmission and spread of nosocomial MRSA infection, and thus an appropriate control programme can be implemented to prevent the spread of MRSA infection.
    Matched MeSH terms: DNA Fingerprinting*
  13. Norazah A, Lim VKE, Koh YT, Rohani MY, Zuridah H, Spencer K, et al.
    J Med Microbiol, 2002 Dec;51(12):1113-1116.
    PMID: 12466411 DOI: 10.1099/0022-1317-51-12-1113
    The emergence and spread of multiresistant methicillin-resistant Staphylococcus aureus (MRSA) strains, especially those resistant to fusidic acid and rifampicin, in Malaysian hospitals is of concern. In this study DNA fingerprinting by PFGE was performed on fusidic acid- and rifampicin-resistant isolates from Malaysian hospitals to determine the genetic relatedness of these isolates and their relationship with the endemic MRSA strains. In all, 32 of 640 MRSA isolates from 9 Malaysian hospitals were resistant to fusidic acid and rifampicin. Seven PFGE types (A, ZC, ZI, ZJ, ZK, ZL and ZM) were observed. The commonest type was type ZC, seen in 72% of isolates followed by type A, seen in 13%. Each of the other types (ZI, ZJ, ZK, ZL and ZM) was observed in a single isolate. Each type, even the commonest, was found in only one hospital. This suggests that the resistant strains had arisen from individual MRSA strains in each hospital and not as a result of the transmission of a common clone.
    Matched MeSH terms: DNA Fingerprinting/methods*
  14. Panneerchelvam S, Haslindawaty N, Ravichandran M, Norazmi MN, Zainuddin ZF
    J Forensic Sci, 2003 Mar;48(2):451-2.
    PMID: 12665016
    Matched MeSH terms: DNA Fingerprinting/methods
  15. Wan KF, Radu S, Cheah YK, Benjamin PG, Ling CM, Hon SF, et al.
    PMID: 15115139
    Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhea among infants in developing countries. A total of 38 EPEC isolates, obtained from diarrhea patients of Hospital Miri, Sarawak, were investigated through plasmid profile, antibiotic resistance and randomly amplified polymorphic DNA (RAPD) analysis. From the 8 types of antibiotics used, all isolates were 100% resistant to furoxime, cephalothin and sulphamethoxazole and showed high multiple antibiotic resistant (MAR) indexes, ranging from 0.5 to 1.0. In plasmid profiling, 22 isolates (58%) showed the presence of one or more plasmids in the range 1.0 to 30.9 mDa. The dendrogram obtained from the results of the RAPD-PCR discriminated the isolates into 30 single isolates and 3 clusters at the level of 40% similarity. The EPEC isolates were highly diverse, as shown by their differing plasmid profiles, antibiotic resistance patterns and RAPD profiles.
    Matched MeSH terms: DNA Fingerprinting/methods*
  16. Chang YM, Burgoyne LA, Both K
    J Forensic Sci, 2003 Nov;48(6):1309-13.
    PMID: 14640276
    The human sex test in forensic multiplexes is based on the amelogenin gene on both the X and Y chromosomes commonly used in sex genotyping. In this study of 338 male individuals in a Malaysian population comprising Malays, Chinese and Indians, using the AmpFlSTR Profiler Plus kit, the amelogenin test gave a significant proportion of null alleles in the Indian ethnic group (3.6% frequency) and 0.88% frequency in the Malay ethnic group due to a deletion of the gene on the Y chromosome. This sex test also failed in a forensic casework sample. Failure of the amelogenin test highlights the need for more reliable sex determination than is offered by the amelogenin locus in the Malay and Indian populations. The gender of the Indian-Malay amelogenin nulls was confirmed by the presence of three Y-STR alleles (DYS438, DYS390 and DYS439). For the Indian ethnic group, one of the Y-STR forms a stable haplotype with the amelogenin null. The amelogenin-deletion individuals also showed a null with a male-specific minisatellite MSY1, indicating that a very large deletion was involved that included the amelogenin and the MSY1 loci on the short arm of the Y chromosomes (Yp).
    Matched MeSH terms: DNA Fingerprinting/methods*
  17. Seah LH, Jeevan NH, Othman MI, Jaya P, Ooi YS, Wong PC, et al.
    Forensic Sci Int, 2003 Dec 17;138(1-3):134-7.
    PMID: 14642733
    Allele frequencies for the 15 STR loci in the AmpFlSTR Identifiler kit were determined and compared for the three main ethnic groups of the Malaysian population comprising 210 Malays, 219 Chinese and 209 Indians. Blood was placed on FTA paper and DNA was purified in-situ.
    Matched MeSH terms: DNA Fingerprinting/methods
  18. Goh YL, Yasin R, Puthucheary SD, Koh YT, Lim VK, Taib Z, et al.
    J Appl Microbiol, 2003;95(5):1134-42.
    PMID: 14633043
    DNA fingerprinting of Salmonella enterica serotype Paratyphi B isolated in Malaysia during 1982-83, 1992 and 1996-2002 was carried out by pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility tests and D-tartrate utilization tests to assess the extent of genetic diversity of these isolates in Malaysia.
    Matched MeSH terms: DNA Fingerprinting*
  19. Othman MI, Seah LH, Panneerchelvam S, Nor NM
    J Forensic Sci, 2004 Jan;49(1):190-1.
    PMID: 14979376
    Matched MeSH terms: DNA Fingerprinting/methods
  20. Chen CH, Shimada T, Elhadi N, Radu S, Nishibuchi M
    Appl Environ Microbiol, 2004 Apr;70(4):1964-72.
    PMID: 15066786
    Of 97 strains of Vibrio cholerae isolated from various seafoods in Malaysia in 1998 and 1999, 20 strains carried the ctx gene and produced cholera toxin. Fourteen, one, and five of these toxigenic strains belonged to the O139, O1 Ogawa, and rough serotypes, respectively. The rough strains had the rfb gene of the O1 serotype. The toxigenic strains varied in their biochemical characteristics, the amount of cholera toxin produced, their antibiograms, and the presence or absence of the pTLC plasmid sequence. DNA fingerprinting analysis by arbitrarily primed PCR, ribotyping, and a pulsed-field gel electrophoresis method classified the toxigenic strains into 3, 7, and 10 types, respectively. The relatedness of these toxigenic strains to clinical strains isolated in other countries and from international travelers was examined by using a dendrogram constructed from the pulsed-field gel electrophoresis profiles. The results of the examination of the antibiogram and the possession of the toxin-linked cryptic plasmid were consistent with the dendrogram-based relatedness: the O139 strains isolated from Malaysian seafoods could be separated into two groups that appear to have been introduced from the Bengal area independently. The rough strains of Malaysian seafood origin formed one group and belonged to a cluster unique to the Thailand-Malaysia-Laos region, and this group may have persisted in this area for a long period. The single O1 Ogawa strain detected in Malaysian seafood appears to have an origin and route of introduction different from those of the O139 and the rough strains.
    Matched MeSH terms: DNA Fingerprinting
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links