Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Tan HY, Yong YK, Shankar EM, Paukovics G, Ellegård R, Larsson M, et al.
    J Immunol, 2016 05 15;196(10):4052-63.
    PMID: 27076678 DOI: 10.4049/jimmunol.1502203
    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) complicates combination antiretroviral therapy (cART) in up to 25% of patients with HIV/TB coinfection. Monocytes and IL-18, a signature cytokine of inflammasome activation, are implicated in TB-IRIS pathogenesis. In this study, we investigated inflammasome activation both pre- and post-cART in TB-IRIS patients. HIV/TB patients exhibited higher proportions of monocytes expressing activated caspase-1 (casp1) pre-cART, compared with HIV patients without TB, and patients who developed TB-IRIS exhibited the greatest increase in casp1 expression. CD64(+) monocytes were a marker of increased casp1 expression. Furthermore, IL-1β, another marker of inflammasome activation, was also elevated during TB-IRIS. TB-IRIS patients also exhibited greater upregulation of NLRP3 and AIM2 inflammasome mRNA, compared with controls. Analysis of plasma mitochondrial DNA levels showed that TB-IRIS patients experienced greater cell death, especially pre-cART. Plasma NO levels were lower both pre- and post-cART in TB-IRIS patients, providing evidence of inadequate inflammasome regulation. Plasma IL-18 levels pre-cART correlated inversely with NO levels but positively with monocyte casp1 expression and mitochondrial DNA levels, and expression of IL-18Rα on CD4(+) T cells and NK cells was higher in TB-IRIS patients, providing evidence that IL-18 is a marker of inflammasome activation. We propose that inflammasome activation in monocytes/macrophages of HIV/TB patients increases with ineffective T cell-dependent activation of monocytes/macrophages, priming them for an excessive inflammatory response after cART is commenced, which is greatest in patients with TB-IRIS.
    Matched MeSH terms: DNA-Binding Proteins/genetics
  2. Al-Absi B, Noor SM, Saif-Ali R, Salem SD, Ahmed RH, Razif MF, et al.
    Tumour Biol., 2017 Apr;39(4):1010428317697573.
    PMID: 28381164 DOI: 10.1177/1010428317697573
    Studies have shown an association between ARID5B gene polymorphisms and childhood acute lymphoblastic leukemia. However, the association between ARID5B variants and acute lymphoblastic leukemia among the Arab population still needs to be studied. The aim of this study was to investigate the association between ARID5B variants with acute lymphoblastic leukemia in Yemeni children. A total of 14 ARID5B gene single nucleotide polymorphisms (SNPs) were genotyped in 289 Yemeni children, of whom 136 had acute lymphoblastic leukemia and 153 were controls, using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Using logistic regression adjusted for age and gender, the risks of acute lymphoblastic leukemia were presented as odds ratios and 95% confidence intervals. We found that nine SNPs were associated with acute lymphoblastic leukemia under additive genetic models: rs7073837, rs10740055, rs7089424, rs10821936, rs4506592, rs10994982, rs7896246, rs10821938, and rs7923074. Furthermore, the recessive models revealed that six SNPs were risk factors for acute lymphoblastic leukemia: rs10740055, rs7089424, rs10994982, rs7896246, rs10821938, and rs7923074. The gender-specific impact of these SNPs under the recessive genetic model revealed that SNPs rs10740055, rs10994982, and rs6479779 in females, and rs10821938 and rs7923074 in males were significantly associated with acute lymphoblastic leukemia risk. Under the dominant model, SNPs rs7073837, rs10821936, rs7896246, and rs6479778 in males only showed striking association with acute lymphoblastic leukemia. The additive model revealed that SNPs with significant association with acute lymphoblastic leukemia were rs10821936 (both males and females); rs7073837, rs10740055, rs10994982, and rs4948487 (females only); and rs7089424, rs7896246, rs10821938, and rs7923074 (males only). In addition, the ARID5B haplotype block (CGAACACAA) showed a higher risk for acute lymphoblastic leukemia. The haplotype (CCCGACTGC) was associated with protection against acute lymphoblastic leukemia. In conclusion, our study has shown that ARID5B variants are associated with acute lymphoblastic leukemia in Yemeni children with several gender biases of ARID5B single nucleotide polymorphisms reported.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  3. Chong ET, Goh LP, See EU, Chuah JA, Chua KH, Lee PC
    Asian Pac J Cancer Prev, 2016;17(2):647-53.
    PMID: 26925658
    BACKGROUND: Breast cancer is the most common type of cancer affecting Malaysian women. Recent statistics revealed that the cumulative probability of breast cancer and related deaths in Malaysia is higher than in most of the countries of Southeast Asia. Single nucleotide polymorphisms (SNPs) in CYP2E1 (rs6413432 and rs3813867), STK15 (rs2273535 and rs1047972) and XRCC1 (rs1799782 and rs25487) have been associated with breast cancer risk in a meta-analysis but any link in Southeast Asia, including Malaysia, remained to be determined. Hence, we investigated the relationship between these SNPs and breast cancer risk among Malaysian women in the present case-control study.

    MATERIALS AND METHODS: Genomic DNA was isolated from peripheral blood of 71 breast cancer patients and 260 healthy controls and subjected to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis.

    RESULTS: Our study showed that the c1/c2 genotype or subjects with at least one c2 allele in CYP2E1 rs3813867 SNP had significantly increased almost 1.8-fold higher breast cancer risk in Malaysian women overall. In addition, the variant Phe allele in STK15 rs2273535 SNP appeared to protect against breast cancer in Malaysian Chinese. No significance association was found between XRCC1 SNPs and breast cancer risk in the population.

    CONCLUSIONS: This study provides additional knowledge on CYP2E1, STK15 and XRCC1 SNP impact of risk of breast cancer, particularly in the Malaysian population. From our findings, we also recommend Malaysian women to perform breast cancer screening before 50 years of age.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
  4. Xin Y, Hao S, Lu J, Wang Q, Zhang L
    PLoS One, 2014;9(4):e95966.
    PMID: 24763305 DOI: 10.1371/journal.pone.0095966
    To comprehensively evaluate the association of ERCC1 C8092A and ERCC2 Lys751Gln polymorphisms with the risk of glioma.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  5. Tan KL, Chia WC, How CW, Tor YS, Show PL, Looi QHD, et al.
    Mol Biotechnol, 2021 Sep;63(9):780-791.
    PMID: 34061307 DOI: 10.1007/s12033-021-00339-2
    The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
    Matched MeSH terms: DNA-Binding Proteins/genetics
  6. Smn Mydin RB, Sreekantan S, Hazan R, Farid Wajidi MF, Mat I
    Oxid Med Cell Longev, 2017;2017:3708048.
    PMID: 28337249 DOI: 10.1155/2017/3708048
    Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.
    Matched MeSH terms: DNA-Binding Proteins/genetics
  7. Cheah PL, Looi LM, Teoh KH, Rahman NA, Wong LX, Tan SY
    Asian Pac J Cancer Prev, 2014;15(7):3287-91.
    PMID: 24815484
    BACKGROUND: The interesting preponderance of Chinese with colorectal carcinoma (CRC) amongst the three major ethnic groups in Malaysia prompted a study to determine DNA mismatch repair (MMR) status in our CRC and attempt correlation with patient age, gender and ethnicity as well as location, grade, histological type and stage of tumour. Histologically re-confirmed CRC, diagnosed between 1st January 2005 and 31st December 2007 at the Department of Pathology, University of Malaya Medical Centre, were immunohistochemically stained with monoclonal antibodies to MMR proteins, MLH1, MSH2, MSH6 and PMS2 on the Ventana Benchmark XT autostainer. Of the 142 CRC cases entered into the study, there were 82 males and 60 females (M:F=1.4:1). Ethnically, 81 (57.0%) were Chinese, 32 (22.5%) Malays and 29 (20.4%) Indians. The patient ages ranged between 15-87 years (mean=62.4 years) with 21 cases <50-years and 121 ≥50-years of age. 14 (9.9%) CRC showed deficient MMR (dMMR). Concurrent loss of MLH1 and PMS2 occurred in 10, MSH2 and MSH6 in 2 with isolated loss of MSH6 in 1 and PMS2 in 1. dMMR was noted less frequently amongst the Chinese (6.2%) in comparison with their combined Malay and Indian counterparts (14.8%), and was associated with right sided and poorly differentiated tumours (p<0.05). 3 of the 5 (60.0%) dMMR CRC cases amongst the Chinese and 1 of 9 cases (11.1%) amongst the combined Malay and Indian group were <50-years of age. No significant association of dMMR was noted with patient age and gender, tumour stage or mucinous type.
    Matched MeSH terms: DNA-Binding Proteins/genetics
  8. Maiti AK, Kim-Howard X, Motghare P, Pradhan V, Chua KH, Sun C, et al.
    Hum Mol Genet, 2014 Aug 1;23(15):4161-76.
    PMID: 24608226 DOI: 10.1093/hmg/ddu106
    Integrin alpha M (ITGAM; CD11b) is a component of the macrophage-1 antigen complex, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. We previously identified a missense polymorphism, rs1143679 (R77H), strongly associated with systemic lupus erythematosus (SLE). However, the molecular mechanisms of this variant are incompletely understood. A meta-analysis of published and novel data on 28 439 individuals with European, African, Hispanic and Asian ancestries reinforces genetic association between rs1143679 and SLE [Pmeta = 3.60 × 10(-90), odds ratio (OR) = 1.76]. Since rs1143679 is in the most active region of chromatin regulation and transcription factor binding in ITGAM, we quantitated ITGAM RNA and surface protein levels in monocytes from patients with each rs1143679 genotype. We observed that transcript levels significantly decreased for the risk allele ('A') relative to the non-risk allele ('G'), in a dose-dependent fashion: ('AA' < 'AG' < 'GG'). CD11b protein levels in patients' monocytes were directly correlated with RNA levels. Strikingly, heterozygous individuals express much lower (average 10- to 15-fold reduction) amounts of the 'A' transcript than 'G' transcript. We found that the non-risk sequence surrounding rs1143679 exhibits transcriptional enhancer activity in vivo and binds to Ku70/80, NFKB1 and EBF1 in vitro, functions that are significantly reduced with the risk allele. Mutant CD11b protein shows significantly reduced binding to fibrinogen and vitronectin, relative to non-risk, both in purified protein and in cellular models. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE.
    Matched MeSH terms: DNA-Binding Proteins/genetics
  9. Zhang H, Lin J, Yahaya BH
    J Cancer Res Clin Oncol, 2024 Jan 28;150(2):44.
    PMID: 38281298 DOI: 10.1007/s00432-023-05554-9
    BACKGROUND: Transactivating DNA-binding protein 43 (TDP-43) is intimately associated with tumorigenesis and progression by regulating mRNA splicing, transport, stability, and non-coding RNA molecules. The exact role of TDP-43 in lung adenocarcinoma (LUAD) has not yet been fully elucidated, despite extensive research on its function in various cancer types. An imperative aspect of comprehending the underlying biological characteristics associated with TDP-43 involves investigating the genes that are co-expressed with this protein. This study assesses the prognostic significance of these co-expressed genes in LUAD and subsequently explores potential therapeutic strategies based on these findings.

    METHODS: Transcriptomic and clinical data pertaining to LUAD were retrieved from open-access databases to establish an association between mRNA expression profiles and the presence of TDP-43. A risk-prognosis model was developed to compare patient survival rates across various groups, and its accuracy was also assessed. Additionally, differences in tumor stemness, mutational profiles, tumor microenvironment (TME) characteristics, immune checkpoints, and immune cell infiltration were analyzed in the different groups. Moreover, the study entailed predicting the potential response to immunotherapy as well as the sensitivity to commonly employed chemotherapeutic agents and targeted drugs for each distinct group.

    RESULTS: The TDP-43 Co-expressed Gene Risk Score (TCGRS) model was constructed utilizing four genes: Kinesin Family Member 20A (KIF20A), WD Repeat Domain 4 (WDR4), Proline Rich 11 (PRR11), and Glia Maturation Factor Gamma (GMFG). The value of this model in predicting LUAD patient survival is effectively illustrated by both the Kaplan-Meier (K-M) survival curve and the area under the receiver operating characteristic curve (AUC-ROC). The Gene Set Enrichment Analysis (GSEA) revealed that the high TCGRS group was primarily enriched in biological pathways and functions linked to DNA replication and cell cycle; the low TCGRS group showed primary enrichment in immune-related pathways and functions. The high and low TCGRS groups showed differences in tumor stemness, mutational burden, TME, immune infiltration level, and immune checkpoints. The predictions analysis of immunotherapy indicates that the Tumor Immune Dysfunction and Exclusion (TIDE) score (p 

    Matched MeSH terms: DNA-Binding Proteins/genetics
  10. Laver TW, Wakeling MN, Hua JHY, Houghton JAL, Hussain K, Ellard S, et al.
    Clin Endocrinol (Oxf), 2018 Nov;89(5):621-627.
    PMID: 30238501 DOI: 10.1111/cen.13841
    OBJECTIVE: Hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or more rarely feature as part of a syndrome. Screening for mutations in the "syndromic" HH genes is guided by phenotype with genetic testing used to confirm the clinical diagnosis. As HH can be the presenting feature of a syndrome, it is possible that mutations will be missed as these genes are not routinely screened in all newly diagnosed individuals. We investigated the frequency of pathogenic variants in syndromic genes in infants with HH who had not been clinically diagnosed with a syndromic disorder at referral for genetic testing.

    DESIGN: We used genome sequencing data to assess the prevalence of mutations in syndromic HH genes in an international cohort of patients with HH of unknown genetic cause.

    PATIENTS: We undertook genome sequencing in 82 infants with HH without a clinical diagnosis of a known syndrome at referral for genetic testing.

    MEASUREMENTS: Within this cohort, we searched for the genetic aetiologies causing 20 different syndromes where HH had been reported as a feature.

    RESULTS: We identified a pathogenic KMT2D variant in a patient with HH diagnosed at birth, confirming a genetic diagnosis of Kabuki syndrome. Clinical data received following the identification of the mutation highlighted additional features consistent with the genetic diagnosis. Pathogenic variants were not identified in the remainder of the cohort.

    CONCLUSIONS: Pathogenic variants in the syndromic HH genes are rare; thus, routine testing of these genes by molecular genetics laboratories is unlikely to be justified in patients without syndromic phenotypes.

    Matched MeSH terms: DNA-Binding Proteins/genetics
  11. Al-Absi B, Razif MFM, Noor SM, Saif-Ali R, Aqlan M, Salem SD, et al.
    Genet Test Mol Biomarkers, 2017 Oct;21(10):592-599.
    PMID: 28768142 DOI: 10.1089/gtmb.2017.0084
    BACKGROUND: Genome-wide and candidate gene association studies have previously revealed links between a predisposition to acute lymphoblastic leukemia (ALL) and genetic polymorphisms in the following genes: IKZF1 (7p12.2; ID: 10320), DDC (7p12.2; ID: 1644), CDKN2A (9p21.3; ID: 1029), CEBPE (14q11.2; ID: 1053), and LMO1 (11p15; ID: 4004). In this study, we aimed to conduct an investigation into the possible association between polymorphisms in these genes and ALL within a sample of Yemeni children of Arab-Asian descent.

    METHODS: Seven single-nucleotide polymorphisms (SNPs) in IKZF1, three SNPs in DDC, two SNPs in CDKN2A, two SNPs in CEBPE, and three SNPs in LMO1 were genotyped in 289 Yemeni children (136 cases and 153 controls), using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Logistic regression analyses were used to estimate ALL risk, and the strength of association was expressed as odds ratios with 95% confidence intervals.

    RESULTS: We found that the IKZF1 SNP rs10235796 C allele (p = 0.002), the IKZF1 rs6964969 A>G polymorphism (p = 0.048, GG vs. AA), the CDKN2A rs3731246 G>C polymorphism (p = 0.047, GC+CC vs. GG), and the CDKN2A SNP rs3731246 C allele (p = 0.007) were significantly associated with ALL in Yemenis of Arab-Asian descent. In addition, a borderline association was found between IKZF1 rs4132601 T>G variant and ALL risk. No associations were found between the IKZF1 SNPs (rs11978267; rs7789635), DDC SNPs (rs3779084; rs880028; rs7809758), CDKN2A SNP (rs3731217), the CEBPE SNPs (rs2239633; rs12434881) and LMO1 SNPs (rs442264; rs3794012; rs4237770) with ALL in Yemeni children.

    CONCLUSION: The IKZF1 SNPs, rs10235796 and rs6964969, and the CDKN2A SNP rs3731246 (previously unreported) could serve as risk markers for ALL susceptibility in Yemeni children.

    Matched MeSH terms: DNA-Binding Proteins/genetics
  12. Pratama E, Tian X, Lestari W, Iseki S, Ichwan SJ, Ikeda MA
    Biochem Biophys Res Commun, 2015 Dec;468(1-2):248-54.
    PMID: 26519881 DOI: 10.1016/j.bbrc.2015.10.121
    ARID3A and ARID3B are transcriptional targets of p53. Recently, it has been reported that ARID3A plays a critical role in the transcriptional activation of pro-arrest p21 in response to DNA damage. However, the role of ARID3B in the p53 regulatory pathway remains poorly understood. Here we show that ARID3A and ARID3B specifically bind to putative ARID3-binding sites in p53 target genes in vitro and in vivo. ARID3B and, to a lesser extent, ARID3A silencing blocked transcriptional activation of pro-apoptotic p53 target genes, such as PUMA, PIG3, and p53. Furthermore, ectopic ARID3B, to a lesser extent, ARID3A expression activated the pro-apoptotic gene expression, and only ARID3B induced apoptosis. Finally, ARID3B but not ARID3A silencing blocked apoptosis induction following DNA damage. These results indicated that, although ARID3B and ARID3A share overlapping functions, ARID3B play a key role in the expression of pro-apoptotic p53-target genes and apoptosis.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  13. Fischer H, Tschachler E, Eckhart L
    Apoptosis, 2020 08;25(7-8):474-480.
    PMID: 32533513 DOI: 10.1007/s10495-020-01614-4
    The release of DNA into the cytoplasm upon damage to the nucleus or during viral infection triggers an interferon-mediated defense response, inflammation and cell death. In human cells cytoplasmic DNA is sensed by cyclic GMP-AMP Synthase (cGAS) and Absent In Melanoma 2 (AIM2). Here, we report the identification of a "natural knockout" model of cGAS. Comparative genomics of phylogenetically diverse mammalian species showed that cGAS and its interaction partner Stimulator of Interferon Genes (STING) have been inactivated by mutations in the Malayan pangolin whereas other mammals retained intact copies of these genes. The coding sequences of CGAS and STING1 are also disrupted by premature stop codons and frame-shift mutations in Chinese and tree pangolins, suggesting that expression of these genes was lost in a common ancestor of all pangolins that lived more than 20 million years ago. AIM2 is retained in a functional form in pangolins whereas it is inactivated by mutations in carnivorans, the phylogenetic sister group of pangolins. The deficiency of cGAS and STING points to the existence of alternative mechanisms of controlling cytoplasmic DNA-associated cell damage and viral infections in pangolins.
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  14. Visuvanathan S, Chong PP, Yap YY, Lim CC, Tan MK, Lye MS
    Asian Pac J Cancer Prev, 2014;15(6):2747-51.
    PMID: 24761895
    BACKGROUND: DNA repair pathways play a crucial role in maintaining the human genome. Previous studies associated DNA repair gene polymorphisms (XPD Lys751Gln, XRCC1 Arg280His and XRCC1 Arg399Gln) with nasopharyngeal carcinoma. These non-synonymous polymorphisms may alter DNA repair capacity and thus increase or decrease susceptibility. The present study aimed to determine the genotype distribution of XPD codon 751, XRCC1 codon 280 and codon 399 polymorphisms and haplotype associations among NPC cases and controls in the Malaysian population.

    MATERIALS AND METHODS: We selected 157 NPC cases and 136 controls from two hospitals in Kuala Lumpur, Malaysia for this study. The polymorphisms studied were genotyped by PCR-RFLP assay and allele and genotype frequencies, haplotype and linkage disequilibrium were determined using SNPstat software.

    RESULTS: For the XPD Lys751Gln polymorphism, the frequency of the Lys allele was higher in cases than in controls (94.5% versus 85.0%). For the XRCC1 Arg280His polymorphism, the frequency of Arg allele was 90.0% and 89.0% in cases and controls, respectively and for XRCC1 Arg399Gln the frequency of the Arg allele was 72.0% and 72.8% in cases and controls respectively. All three polymorphisms were in linkage disequilibrium. The odds ratio from haplotype analysis for these three polymorphisms and their association with NPC was 1.93 (95%CI: 0.90-4.16) for haplotype CGC vs AGC allele combinations. The global haplotype association with NPC gave a p-value of 0.054.

    CONCLUSIONS: Our study provides an estimate of allele and genotype frequencies of XRCC1Arg280His, XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms in the Malaysian population and showed no association with nasopharyngeal cancer.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
  15. Peh SC, Sandvej K, Pallesen G
    Int J Cancer, 1995 May 4;61(3):327-32.
    PMID: 7729943
    Epstein-Barr virus (EBV) type B, a less potent transformer of B lymphocytes than type A, has rarely been detected in EBV-associated neoplasms except in AIDS-related lymphomas, in which about 50% of the cases contained this sub-type. In this study we analyzed the association of EBV and the distribution of virus sub-types in Asian non-Hodgkin's lymphoma (NHL) of the upper aerodigestive tract. We studied archival material of 29 NHL cases from Malaysia. B- and T-cell associated antigens were demonstrated by immunohistochemistry, and EBV early RNA EBER-1 was demonstrated using the RNA in situ hybridization technique. EBV was detected in the majority of tumour cells in 11/13 T-NHL but in only 1/16 B-NHL. EBV was sub-typed by single-step polymerase chain reaction of the EBNA-2 gene. This was successful in 9/10 cases of EBER-1-positive tumours and all contained type-A virus only. Our results showed a preponderance of T-cell lymphoma of the upper aerodigestive tract in the ethnic Chinese group of Malaysian patients, and EBV was strongly associated with T-NHL but not with B-NHL. Our results suggest that type-A EBV is the prevalent sub-type in Asian NHL of the upper aerodigestive tract, similarly to findings in Asian nasopharyngeal carcinoma.
    Matched MeSH terms: DNA-Binding Proteins/genetics
  16. Moey LH, Abdul Azize NA, Yakob Y, Leong HY, Keng WT, Chen BC, et al.
    Pediatr Neonatol, 2018 08;59(4):397-403.
    PMID: 29203193 DOI: 10.1016/j.pedneo.2017.11.006
    BACKGROUND: Fructose-1,6-bisphosphatase (FBPase) deficiency is a rare autosomal recessive inborn error of gluconeogenesis. We reported the clinical findings and molecular genetic data in seven Malaysian patients with FBPase deficiency.

    METHODS: All patients diagnosed with FBPase deficiency from 2010 to 2015 were included in this study. Their clinical and laboratory data were collected retrospectively.

    RESULTS: All the patients presented with recurrent episodes of hypoglycemia, metabolic acidosis, hyperlactacidemia and hepatomegaly. All of them had the first metabolic decompensation prior to 2 years old. The common triggering factors were vomiting and infection. Biallelic mutations in FBP1 gene (MIM*611570) were identified in all seven patients confirming the diagnosis of FBPase deficiency. In four patients, genetic study was prompted by detection of glycerol or glycerol-3-phosphate in urine organic acids analysis. One patient also had pseudo-hypertriglyceridemia. Seven different mutations were identified in FBP1, among them four mutations were new: three point deletions (c.392delT, c.603delG and c.704delC) and one splice site mutation (c.568-2A > C). All four new mutations were predicted to be damaging by in silico analysis. One patient presented in the neonatal period and succumbed due to sepsis and multi-organ failure. Among six survivors (current age ranged from 4 to 27 years), four have normal growth and cognitive development. One patient had short stature and another had neurological deficit following status epilepticus due to profound hypoglycemia.

    CONCLUSION: FBPase deficiency needs to be considered in any children with recurrent hypoglycemia and metabolic acidosis. Our study expands the spectrum of FBP1 gene mutations.

    Matched MeSH terms: DNA-Binding Proteins/genetics*
  17. Stremenova Spegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al.
    Blood, 2020 Aug 27;136(9):1055-1066.
    PMID: 32518946 DOI: 10.1182/blood.2020005844
    Molecular dissection of inborn errors of immunity can help to elucidate the nonredundant functions of individual genes. We studied 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin. All 3 showed early autologous T-cell reconstitution following allogeneic hematopoietic stem cell transplantation. By whole-exome sequencing, we identified rare homozygous germline missense or nonsense variants in a known epigenetic regulator of gene expression: ten-eleven translocation methylcytosine dioxygenase 2 (TET2). Mutated TET2 protein was absent or enzymatically defective for 5-hydroxymethylating activity, resulting in whole-blood DNA hypermethylation. Circulating T cells showed an abnormal immunophenotype including expanded double-negative, but depleted follicular helper, T-cell compartments and impaired Fas-dependent apoptosis in 2 of 3 patients. Moreover, TET2-deficient B cells showed defective class-switch recombination. The hematopoietic potential of patient-derived induced pluripotent stem cells was skewed toward the myeloid lineage. These are the first reported cases of autosomal-recessive germline TET2 deficiency in humans, causing clinically significant immunodeficiency and an autoimmune lymphoproliferative syndrome with marked predisposition to lymphoma. This disease phenotype demonstrates the broad role of TET2 within the human immune system.
    Matched MeSH terms: DNA-Binding Proteins/genetics
  18. Zahary MN, Kaur G, Hassan MR, Sidek AS, Singh H, Yeh LY, et al.
    Int J Colorectal Dis, 2014 Feb;29(2):261-2.
    PMID: 24072394 DOI: 10.1007/s00384-013-1770-1
    Matched MeSH terms: DNA-Binding Proteins/genetics*
  19. Kotaki R, Higuchi H, Ogiya D, Katahira Y, Kurosaki N, Yukihira N, et al.
    Int J Hematol, 2017 Dec;106(6):811-819.
    PMID: 28831750 DOI: 10.1007/s12185-017-2314-1
    miR-1 and miR-133 are clustered on the same chromosomal loci and are transcribed together as a single transcript that is positively regulated by ecotropic virus integration site-1 (EVI1). Previously, we described how miR-133 has anti-tumorigenic potential through repression of EVI1 expression. It has also been reported that miR-1 is oncogenic in the case of acute myeloid leukemia (AML). Here, we show that expression of miR-1 and miR-133, which have distinct functions, is differentially regulated between AML cell lines. Interestingly, the expression of miR-1 and EVI1, which binds to the promoter of the miR-1/miR-133 cluster, is correlative. The expression levels of TDP-43, an RNA-binding protein that has been reported to increase the expression, but inhibits the activity, of miR-1, were not correlated with expression levels of miR-1 in AML cells. Taken together, our observations raise the possibility that the balance of polycistronic miRNAs is regulated post-transcriptionally in a hierarchical manner possibly involving EVI1, suggesting that the deregulation of this balance may play some role in AML cells with high EVI1 expression.
    Matched MeSH terms: DNA-Binding Proteins/genetics
  20. Nguyen DDN, Zain SM, Kamarulzaman MH, Low TY, Chilian WM, Pan Y, et al.
    Am J Physiol Heart Circ Physiol, 2021 10 01;321(4):H770-H783.
    PMID: 34506226 DOI: 10.1152/ajpheart.00058.2021
    Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal hsa-miR-155-5p expression [n = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, hsa-miR-155-5p was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, hsa-miR-664a-3p, hsa-miR-664a-5p, hsa-miR-664b-3p, hsa-miR-4485-3p, hsa-miR-10527-5p, and hsa-miR-12136, and that from the exosomal pool, that is, hsa-miR-7704, were upregulated in hVSMCs during replicative senescence (n = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging.NEW & NOTEWORTHY This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. Hsa-miR-155-5p was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. Hsa-miR-155-5p might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
    Matched MeSH terms: DNA-Binding Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links