Displaying publications 1 - 20 of 83 in total

Abstract:
Sort:
  1. Blok J, Kay BH, Hall RA, Gorman BM
    Arch Virol, 1988;100(3-4):213-20.
    PMID: 2840873
    Thirteen strains of dengue type 1 were isolated from the lymphocyte fractions of 69 acute phase blood samples collected at Thursday Island Hospital during 1981 and 1982. One further strain of type 1 was isolated from 7 blood samples despatched by air from Cairns Base Hospital during 1982. Four of these Australian isolates representing the beginning, middle, and end of the epidemic were examined by restriction enzyme mapping and were found to be identical for the nine restriction enzymes used. The maps differed from those derived from two Malaysian dengue type 1 strains isolated during the epidemic of 1981-82 in that country. This suggests reliance on serological typing to establish global circulation patterns of epidemic dengue is insufficient and that more specific methods such as genome mapping are useful.
    Matched MeSH terms: Dengue Virus/genetics
  2. Samuel S, Koh CL, Blok J, Pang T, Lam SK
    Nucleic Acids Res, 1989 Nov 11;17(21):8875.
    PMID: 2587234
    Matched MeSH terms: Dengue Virus/genetics*
  3. Samuel S, Koh CL, Blok J, Pang T, Lam SK
    Nucleic Acids Res, 1989 Nov 11;17(21):8888.
    PMID: 2587243
    Matched MeSH terms: Dengue Virus/genetics*
  4. Samuel S, Koh CL, Blok J, Pang T, Lam SK
    Nucleic Acids Res, 1989 Nov 11;17(21):8887.
    PMID: 2587242
    Matched MeSH terms: Dengue Virus/genetics*
  5. Kautner IM, Lam SK
    Res. Virol., 1992 May-Jun;143(3):193-7.
    PMID: 1355609
    In recent years, a large amount of nucleotide sequence data for dengue viruses has been published. Most of it was derived by sequencing cDNA synthesized from highly purified genomic viral RNA. This paper presents a simple and rapid method for the isolation of total RNA from mosquito cells infected with dengue viruses. This RNA can be used for direct nucleotide sequencing with specific primers without the need for further purification.
    Matched MeSH terms: Dengue Virus/genetics*
  6. Lanciotti RS, Lewis JG, Gubler DJ, Trent DW
    J Gen Virol, 1994 Jan;75 ( Pt 1):65-75.
    PMID: 8113741
    The nucleic acid sequences of the pre-membrane/membrane and envelope protein genes of 23 geographically and temporally distinct dengue (DEN)-3 viruses were determined. This was accomplished by reverse transcriptase-PCR amplification of the structural genes followed by automated DNA sequence analysis. Comparison of nucleic acid sequences revealed that similarity among the viruses was greater than 90%. The similarity among deduced amino acids was between 95% and 100%, and in many cases identical amino acid substitutions occurred among viruses from similar geographical regions. Alignment of nucleic acid sequences followed by parsimony analysis allowed the generation of phylogenetic trees, demonstrating that geographically independent evolution of DEN-3 viruses had occurred. The DEN-3 viruses were separated into four genetically distinct subtypes. Subtype I consists of viruses from Indonesia, Malaysia, the Philippines and the South Pacific islands; subtype II consists of viruses from Thailand; subtype III consists of viruses from Sri Lanka, India, Africa and Samoa; subtype IV consists of viruses from Puerto Rico and the 1965 Tahiti virus. Phylogenetic analysis has also contributed to our understanding of the molecular epidemiology and worldwide distribution of DEN-3 viruses.
    Matched MeSH terms: Dengue Virus/genetics*
  7. Chan SY, Kautner IM, Lam SK
    J Virol Methods, 1994 Oct;49(3):315-22.
    PMID: 7868649
    The potential of RT-PCR to rapidly diagnose dengue infections from both acute and convalescent phase patients' sera was evaluated. The RNA extraction method involved binding of the viral RNA to silica particles in the presence of high concentration of guanidine thiocyanate. The protocol that was established was sensitive enough to detect 40 plaque forming units per 100 microliter of serum and results could be obtained within one day. Results from this study indicate that clinical samples should be collected in the early acute phase of illness when anti-dengue antibodies were undetectable or of low titres to ensure a more reliable diagnosis.
    Matched MeSH terms: Dengue Virus/genetics
  8. Chow VT, Seah CL, Chan YC
    Intervirology, 1994;37(5):252-8.
    PMID: 7698880
    By a combination of PCR and direct-cycle sequencing using consensus primers, we analyzed approximately 400-bp fragments within the NS3 genes of twenty-one dengue virus type 3 strains isolated from five neighboring Southeast Asian countries at different time intervals from 1956 to 1992. The majority of base disparities were silent mutations, with few predicted amino acid substitutions, thus emphasizing the strict conservation of the NS3 gene. Phylogenetic trees constructed on the basis of these nucleotide differences revealed distinct but related clusters of strains from the Philippines, Indonesia, and strains from Singapore and Malaysia of the 1970s and early 1980s, while the Thai cluster was relatively more distant. This genetic relationship was compatible with that proposed by other workers who have studied other dengue 3 virus genes such as E, M and prM. However, we observed that the more recent, epidemic-associated dengue 3 strains from Singapore and Malaysia of the late 1980s and early 1990s were more closely related to the Thai cluster, implying their evolution from the latter, and emphasizing the importance of viral spread via increasing travel within the Southeast Asian area and elsewhere. Nucleotide sequence analysis of the NS3 genes of dengue viruses can serve to advance the understanding of the epidemiology and evolution of these viruses.
    Matched MeSH terms: Dengue Virus/genetics*
  9. Thayan R, Vijayamalar B, Zainah S, Chew TK, Morita K, Sinniah M, et al.
    PMID: 9139373
    This study describes the use of polymerase chain reaction as a diagnostic tool for detecting and typing of dengue virus. PCR was compared against virus isolation. First RT-PCR was done using dengue consensus primers after which positive samples were subjected to RT-PCR using type-specific primers. This study shows that the local strains of the dengue virus could be detected using the chosen primers. Furthermore, RT-PCR was found to be more sensitive than virus isolation in identifying the dengue positive samples.
    Matched MeSH terms: Dengue Virus/genetics*
  10. Thayan R, Morita K, Vijayamalar B, Zainah S, Chew TK, Oda K, et al.
    PMID: 9444025
    The aim of this study was to determine whether mutations could occur in the dengue virus genome following three subpassages of the virus in a mosquito cell line. This was done because sources of virus isolates used for sequencing studies are usually maintained in cell lines rather than in patients' sera. Therefore it must be assured that no mutation occurred during the passaging. For this purpose, sequencing was carried out using the polymerase chain reaction (PCR) products of the envelope/non-structural protein 1 junction region (280 nucleotides) of dengue type 3 virus. Sequence data were compared between the virus from a patient's serum against the virus subpassaged three times in the C6/36 cell line. We found that the sequence data of the virus from serum was identical to the virus that was subpassaged three times in C6/36 cell line.
    Matched MeSH terms: Dengue Virus/genetics*
  11. Ong CC, Lam SK, AbuBakar S
    Malays J Pathol, 1998 Jun;20(1):11-7.
    PMID: 10879258
    In vitro generated cloned full length dengue 2 virus untranslated regions (UTRs) were used in RNA gel mobility shift assays to examine cellular factors binding to the virus genomes. Cellular factors in lysates of Vero (monkey) and C6/36 (mosquito) cells bound specifically and non-specifically to the dengue 2 virus 3' UTR. Non-specific interaction with the 5' UTR, resulting in formation of at least 4 band shift complexes was noted with lysate of the C6/36 cells only. Pre-treating the cell lysates with proteinase K affected binding of cellular factors to the dengue 2 virus UTRs, suggesting that the cellular factors were proteins. These findings suggest that cellular proteins could interact with specific sites on the dengue virus genomes.
    Matched MeSH terms: Dengue Virus/genetics*
  12. Fong MY, Koh CL, Lam SK
    Res. Virol., 1998 Nov-Dec;149(6):457-64.
    PMID: 9923022
    The limited sequencing approach was used to study the molecular epidemiology of 24 Malaysian dengue 2 viruses which were isolated between 1968 and 1993. The sequences of a 240-nucleotide-long region across the envelope/non-structural 1 protein (E/NS1) gene junction of the isolates were determined and analysed. Alignment and comparison of the nucleotide and deduced amino acid sequences of the isolates revealed that nucleotide changes occurred mostly at the third position of a particular codon and were of the transition (AG, CU) type. Five nucleotide changes resulted in amino acid substitutions. Pairwise comparisons of the nucleotide sequences gave divergence values ranging from 0 to 9.2%. At the amino acid level, the divergence ranged between 0 and 3.8%. Based on the 6% divergence as the cut-off point for genotypic classification, the isolates were grouped into two genotypes, I and II. Comparison of the nucleotide sequences of the Malaysian dengue isolates with those of the dengue viruses of other regions of the world revealed that members of genotypes I and II were closely related to viruses from the Indian Ocean and Western Pacific regions, respectively.
    Matched MeSH terms: Dengue Virus/genetics*
  13. Cardosa MJ
    Br Med Bull, 1998;54(2):395-405.
    PMID: 9830205 DOI: 10.1093/oxfordjournals.bmb.a011696
    Dengue virus infection is now a global problem affecting tens of millions of people. The spread of the four dengue virus serotypes had led to increased incidence of dengue haemorrhagic fever (DHF) reported and with 2.5 billion people at risk, efforts towards the development of safe and effective vaccines against dengue must be accelerated. This chapter reviews some of the important lessons of pathogenesis which may be learnt from classical studies in the field and place these in the context of current knowledge about the molecular biology of the virus. The issues which have to be addressed in designing a safe vaccine against dengue are raised and the problems of designing subunit as well as whole virus vaccines are pointed out, particularly with regard to the phenomenon of antibody dependent enhancement and, more generally, the problem of immune potentiation of disease. More efforts must be made to understand the basis of pathogenesis in DHF and in finding out what nature has to teach about protection against and recovery from dengue virus infection.
    Matched MeSH terms: Dengue Virus/genetics
  14. Kobayashi N, Thayan R, Sugimoto C, Oda K, Saat Z, Vijayamalar B, et al.
    Am J Trop Med Hyg, 1999 Jun;60(6):904-9.
    PMID: 10403318
    To characterize the dengue epidemic that recently occurred in Malaysia, we sequenced cDNAs from nine 1993-1994 dengue virus type-3 (DEN-3) isolates in Malaysia (DEN-3 was the most common type in Malaysia during this period). Nucleic acid sequences (720 nucleotides in length) from the nine isolates, encompassing the precursor of membrane protein (preM) and membrane (M) protein genes and part of the envelope (E) protein gene were aligned with various reference DEN-3 sequences to generate a neighbor-joining phylogenetic tree. According to the constructed tree, the nine Malaysian isolates were grouped into subtype II, which comprises Thai isolates from 1962 to 1987. Five earlier DEN-3 virus Malaysian isolates from 1974 to 1981 belonged to subtype I. The present data indicate that the recent dengue epidemic in Malaysia was due to the introduction of DEN-3 viruses previously endemic to Thailand.
    Matched MeSH terms: Dengue Virus/genetics
  15. Wang E, Ni H, Xu R, Barrett AD, Watowich SJ, Gubler DJ, et al.
    J Virol, 2000 Apr;74(7):3227-34.
    PMID: 10708439
    Endemic/epidemic dengue viruses (DEN) that are transmitted among humans by the mosquito vectors Aedes aegypti and Aedes albopictus are hypothesized to have evolved from sylvatic DEN strains that are transmitted among nonhuman primates in West Africa and Malaysia by other Aedes mosquitoes. We tested this hypothesis with phylogenetic studies using envelope protein gene sequences of both endemic/epidemic and sylvatic strains. The basal position of sylvatic lineages of DEN-1, -2, and -4 suggested that the endemic/epidemic lineages of these three DEN serotypes evolved independently from sylvatic progenitors. Time estimates for evolution of the endemic/epidemic forms ranged from 100 to 1,500 years ago, and the evolution of endemic/epidemic forms represents relatively recent events in the history of DEN evolution. Analysis of envelope protein amino acid changes predicted to have accompanied endemic/epidemic emergence suggested a role for domain III in adaptation to new mosquito and/or human hosts.
    Matched MeSH terms: Dengue Virus/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links