Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Shankargouda SB, Sidhu P, Kardalkar S, Desai PM
    J Prosthodont, 2017 Feb;26(2):168-171.
    PMID: 26479878 DOI: 10.1111/jopr.12385
    Residual ridge resorption is a rapid, progressive, irreversible, and inevitable process of bone resorption. Long-standing teeth and implants have been shown to have maintained the bone around them without resorption. Thus, overdenture therapy has been proven to be beneficial in situations where few remaining teeth are present. In addition to the various advantages seen with tooth-supported telescopic overdentures, a few shortcomings can also be expected, including unseating of the overdenture, increased bulk of the prosthesis, secondary caries, etc. The precise transfer of the secondary telescopic copings to maintain the spatial relationship, without any micromovement, remains the most critical step in ensuring the success of the tooth-supported telescopic prosthesis. Thus, a simple and innovative technique of splinting the secondary copings was devised to prevent distortion and micromovement and maintain its spatial relationship.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported/methods*
  2. Chen J, Ahmad R, Suenaga H, Li W, Swain M, Li Q
    J Biomech, 2015 Feb 5;48(3):512-9.
    PMID: 25560272 DOI: 10.1016/j.jbiomech.2014.11.043
    Although implant-retained overdenture allows edentulous patients to take higher occlusal forces than the conventional complete dentures, the biomechanical influences have not been explored yet. Clinically, there is limited knowledge and means for predicting localized bone remodelling after denture treatment with and without implant support. By using finite element (FE) analysis, this article provides an in-silico approach to exploring the treatment effects on the oral mucosa and potential resorption of residual ridge under three different denture configurations in a patient-specific manner. Based on cone beam computerized tomography (CBCT) scans, a 3D heterogeneous FE model was created; and the supportive tissue, mucosa, was characterized as a hyperelastic material. A measured occlusal load (63N) was applied onto three virtual models, namely complete denture, two and four implant-retained overdentures. Clinically, the bone resorption was measured after one year in the two implant-retained overdenture treatment. Despite the improved stability and enhanced masticatory function, the implant-retained overdentures demonstrated higher hydrostatic stress in mucosa (43.6kPa and 39.9kPa for two and four implants) at the posterior ends of the mandible due to the cantilever effect, than the complete denture (33.4kPa). Hydrostatic pressure in the mucosa signifies a critical indicator and can be correlated with clinically measured bone resorption, pointing to severer mandibular ridge resorption posteriorly with implant-retained overdentures. This study provides a biomechanical basis for denture treatment planning to improve long-term outcomes with minimal residual ridge resorption.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported/instrumentation*
  3. Kher U, Patil PG, Tunkiwala A, Advani P
    J Prosthet Dent, 2020 08;124(2):248-249.
    PMID: 31810615 DOI: 10.1016/j.prosdent.2019.09.020
    Matched MeSH terms: Dental Prosthesis, Implant-Supported
  4. Khalid T, Yunus N, Ibrahim N, Saleh NBM, Goode D, Masood M
    J Prosthet Dent, 2020 Dec;124(6):674-681.
    PMID: 31952858 DOI: 10.1016/j.prosdent.2019.08.005
    STATEMENT OF PROBLEM: Wearers of mandibular complete dentures (CDs) often complain of retention and stability problems resulting in poor masticatory function. Evidence suggests that a mandibular overdenture (MOD) stabilized by 2 implants represents the treatment of choice to improve stability and masticatory function. Measurements are needed of the improvement in masticatory function after providing mandibular implant-stabilized overdentures.

    PURPOSE: The purpose of this prospective clinical study was to evaluate the changes in masticatory function from baseline (T0) to 3 months (T1) and 3 years (T2) in participants with MODs and to assess the effect of baseline mandibular bone height and volume on masticatory function after 3 years.

    MATERIAL AND METHODS: Participants were assessed for masticatory function by using masticatory performance involving paraffin wax cubes as an objective measure and by using masticatory ability involving a questionnaire as a subjective measure. Edentulous individuals presenting for replacement dentures were provided with conventional mucosa-supported prostheses and evaluated for masticatory function after a 3-month settling-in period (baseline measure). Before implant placement, baseline measures of bone height and volume were recorded from cone beam computed tomography (CBCT) images. The prostheses were then converted to implant-stabilized mandibular overdentures while any maxillary prostheses remained supported by the mucosa. Masticatory function was reassessed at 3 months and 3 years after insertion of the mandibular overdentures, and the mean changes from baseline were analyzed with the Wilcoxon signed-rank test. The effect of variables on masticatory function was determined by using multivariate linear regression analyses.

    RESULTS: A total of 23 participants were included in the study, with only 1 participant not completing the 3-year assessment. Significant improvement was observed in the masticatory performance (mixing ability index) (Pimplant-stabilized mandibular overdenture.

    CONCLUSIONS: Masticatory function significantly improved after 3 months and was maintained over 3 years in participants with implant-stabilized mandibular overdentures. However, baseline bone height and volume had no significant effect on these changes in masticatory function after 3 years.

    Matched MeSH terms: Dental Prosthesis, Implant-Supported
  5. Khuder T, Yunus N, Sulaiman E, Ibrahim N, Khalid T, Masood M
    J Oral Rehabil, 2017 May;44(5):398-404.
    PMID: 28295492 DOI: 10.1111/joor.12504
    This study aimed to investigate residual ridge resorption (RRR) of anterior and posterior maxillary and mandibular edentulous ridges, in patients treated with mandibular implant overdentures (IOD) and compare with conventional complete denture (CD) wearers, and to determine at each location, the association of RRR with the occlusal forces distribution and other patients' variables. The anterior and posterior RRR of IOD (six males, 17 females) and CD (12 males, 11 females) groups were determined using baseline and follow-up dental panaromic radiographs (DPT) (mean intervals 4 ± 1·8 years). The bone ratios were calculated using proportional area: anatomic to fixed reference areas and mean difference of ratios between the intervals determined RRR. The ridge locations included anterior and posterior maxillary and posterior mandibular arches. The T-Scan III digital occlusal system was used to record anterior and posterior percentage occlusal force (%OF) distributions. There were significant differences in anterior and posterior %OF between treatment groups. Two-way anova showed RRR was significant for arch locations (P = 0·005), treatment group (IOD versus CD) (P = 0·001), however, no significant interaction (P = 0·799). Multivariate regression analyses showed significant association between RRR and %OF at anterior maxilla (P = 0·000) and posterior mandible (P = 0·023) and for treatment groups at posterior maxilla (P = 0·033) and mandibular areas (P = 0·021). Resorption was observed in IOD compared to CD groups, with 8·5% chance of less resorption in former and 7·8% in the latter location. Depending on arch location, ridge resorption at various locations was associated with occlusal force distribution and/or treatment groups (implant prostheses or conventional complete dentures).
    Matched MeSH terms: Dental Prosthesis, Implant-Supported/instrumentation*
  6. Patil PG, Seow LL, Uddanwadikar R, Ukey PD
    J Prosthet Dent, 2021 Jan;125(1):138.e1-138.e8.
    PMID: 33393474 DOI: 10.1016/j.prosdent.2020.09.015
    STATEMENT OF PROBLEM: Mini implants (<3 mm in diameter) are being used as an alternative to standard implants for implant-retained mandibular overdentures; however, they may exhibit higher stresses at the crestal level.

    PURPOSE: The purpose of this finite element analysis study was to evaluate the biomechanical behavior (stress distribution pattern) in the mandibular overdenture, mucosa, bone, and implants when retained with 2 standard implants or 2 mini implants under unilateral or bilateral loading conditions.

    MATERIAL AND METHODS: A patient with edentulous mandible and his denture was scanned with cone beam computed tomography (CBCT), and a 3D mandibular model was created in the Mimics software program by using the CBCT digital imaging and communications in medicine (DICOM) images. The model was transferred to the 3Matics software program to form a 2-mm-thick mucosal layer and to assemble the denture DICOM file. A 12-mm-long standard implant (Ø3.5 mm) and a mini dental implant (Ø2.5 mm) along with the LOCATOR male attachments (height 4 mm) were designed by using the SOLIDWORKS software program. Two standard or 2 mini implants in the canine region were embedded separately in the 3D assembled model. The base of the mandible was fixed, and vertical compressive loads of 100 N were applied unilaterally and bilaterally in the first molar region. The material properties for acrylic resin (denture), titanium (implants), mucosa (tissue), and bone (mandible) were allocated. Maximum von Mises stress and strain values were obtained and analyzed.

    RESULTS: Maximum stresses of 9.78 MPa (bilaterally) and 11.98 MPa (unilaterally) were observed in 2 mini implants as compared with 3.12 MPa (bilaterally) and 3.81 MPa (unilaterally) in 2 standard implants. The stress values in the mandible were observed to be almost double the mini implants as compared with the standard implants. The stresses in the denture were in the range of 3.21 MPa and 3.83 MPa and in the mucosa of 0.68 MPa and 0.7 MPa for 2 implants under unilateral and bilateral loading conditions. The strain values shown similar trends with both implant types under bilateral and unilateral loading.

    CONCLUSIONS: Two mini implants generated an average of 68.15% more stress than standard implants. The 2 standard implant-retained overdenture showed less stress concentration in and around implants than mini implant-retained overdentures.

    Matched MeSH terms: Dental Prosthesis, Implant-Supported
  7. Alsrouji MS, Ahmad R, Ibrahim N, Kuntjoro W, Al-Harbi FA, Baba NZ
    J Prosthodont, 2019 Apr;28(4):373-378.
    PMID: 30875139 DOI: 10.1111/jopr.13047
    PURPOSE: Blood flow disturbance from functional pressure may lead to ischemia and accumulation of metabolites leading to residual ridge resorption (RRR) underneath complete dentures. The purposes of this study were to determine the effect of mandibular complete denture (CD) and implant-retained overdenture (IRO) on blood flow disturbance in the opposing denture bearing-mucosa of maxillary CD and to compare the blood flow disturbance to RRR of the anterior maxilla.

    MATERIALS AND METHODS: The test group included 9 participants rehabilitated by maxillary CD opposing mandibular IRO, while the control group consisted of 4 participants with CDs. Blood flow was measured by laser Doppler flowmetry (LDF) after denture removal for 0, 30, 60, and 90 minutes. RRR was quantified as reduction in bone volume a year post-treatment. The measurement of blood flow was then compared to the quantification of RRR.

    RESULTS: The mean blood flow measure for the IRO group was significantly lower than CD after immediate denture removal and 30 minutes later. After 60 minutes, the mean difference was not significant between groups, and at 90 minutes, the mean blood flow of both groups equalized to reach a steady state of 377 BPU. The mandibular IRO had reduced the initial blood flow measure in the opposing anterior maxilla mucosa to almost a quarter (103 BPU) of the steady state value (377 BPU) compared to the CD, which reduced it to only about one half (183 BPU), suggesting greater blood flow disturbance in the IRO group. This result is in tandem with the greater reduction of bone volume observed in the IRO group, which was 7.3 ± 1.3% after a year, almost three times higher than CD group at 2.6 ± 1.7%.

    CONCLUSION: IRO may cause significantly higher blood flow disturbance than CD and may have contributed to greater RRR in the anterior maxilla.

    Matched MeSH terms: Dental Prosthesis, Implant-Supported
  8. Siar CH, Pua CK, Toh CG, Romanos G, Ng KH
    Oral Surg Oral Med Oral Pathol Oral Radiol, 2012 Nov;114(5 Suppl):S46-53.
    PMID: 23083955 DOI: 10.1016/j.tripleo.2011.07.049
    The objective of this study was to investigate the cementum status in natural teeth opposing implant-supported bridgework.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported/adverse effects*
  9. Mahat NS, Shetty NY, Kohli S, Jamayet NB, Patil P
    Evid Based Dent, 2023 Sep;24(3):142.
    PMID: 37369705 DOI: 10.1038/s41432-023-00904-5
    OBJECTIVE: To analyze the clinical outcomes of implant-supported prostheses and tooth-supported fixed prostheses, fabricated from digital and conventional impression.

    MATERIALS AND METHODS: The literature search was carried out on two electronic databases (PubMed and Cochrane Library). Randomized controlled trials (RCT) published from January 2011 to September 2022 were included. The bias risk was evaluated using Cochrane Risk of Bias Tool 2.0. Further screening was done for meta-analysis according to modified Newcastle-Ottawa scoring criteria. Forest plot was generated using a statistical method of inverse variance of random effect with 95% confidence interval.

    RESULTS: A total of 8 randomized controlled trials were included for systematic review out of which four studies were based on tooth-supported fixed prosthesis and remaining four were based on implant-supported prosthesis. Further screening was conducted and three studies were eligible for meta-analysis. Tooth-supported fixed prosthesis fabricated from digital impression showed no significant difference in the marginal fit in any region measured, except for occlusal region where conventional impression showed more favorable marginal fit. Implant-supported prosthesis fabricated from digital impression showed survival rates ranging from 97.3 to 100% and there was no statistically significant difference in marginal bone loss (p = 0.14).

    CONCLUSION: Implant-supported prostheses fabricated from digital and conventional impressions show no significant differences in their clinical outcomes. Tooth-supported fixed prostheses fabricated from digital impression have shown favorable findings in terms of marginal fit. Despite that, there is still lack of clinical trials with larger sample size and longer follow-up periods. Future studies that fulfill these two criteria are deemed necessary.

    Matched MeSH terms: Dental Prosthesis, Implant-Supported
  10. Patil PG, Seow LL
    J Prosthet Dent, 2020 May;123(5):710-716.
    PMID: 31558274 DOI: 10.1016/j.prosdent.2019.07.015
    STATEMENT OF PROBLEM: Single-implant-retained overdentures are an alternative treatment option for an edentulous mandible. However, evaluation of their clinical performance with an immediate loading protocol is lacking.

    PURPOSE: The purpose of this prospective randomized controlled clinical study was to evaluate crest bone-level changes and patient satisfaction with mandibular overdentures retained by 1 or 2 titanium-zirconium (Ti-Zr) implants with immediate loading protocols after 1 year.

    MATERIAL AND METHODS: Thirty-six Ti-Zr implants were placed in 24 participants (single central implant in 12 participants and 2 interforaminal implants in 11 participants) by a single operator. LOCATOR attachments were used to retain the mandibular overdentures with an immediate loading protocol, and observations were made at 1 month and 1 year. Changes to the crestal bone level were evaluated with digital periapical radiographs. A 100-mm visual analog scale (VAS) was used to evaluate patient satisfaction. The Mann-Whitney U test was used to analyze the data.

    RESULTS: At 1 month, the mean crestal bone loss was 0.23 mm in the 2-implant group (n=22) and 0.39 mm (P=.181) in the single-implant group (n=11). At 1 year, the bone loss was 0.67 mm in the 2-implant group and 0.88 mm (P=.248) in the single-implant group. The mean VAS score for patient satisfaction level increased from 38.3% to 49.7% for single-implant participants and from 40.5% to 54.8% for 2-implant participants 1 month after implant placement (P=.250) and from 38.3% to 54.5% for single-implant participants and from 40.5% to 58.9% for 2-implant participants after 1 year (P=.341).

    CONCLUSIONS: Single-implant-retained mandibular overdentures with an immediate loading protocol may represent a viable treatment option considering crestal bone-level changes and patient satisfaction compared with 2-implant-retained mandibular overdentures after 1 year of follow-up.

    Matched MeSH terms: Dental Prosthesis, Implant-Supported*
  11. Patil PG, Seow LL, Uddanwadikar R, Pau A, Ukey PD
    J Prosthet Dent, 2024 Feb;131(2):281.e1-281.e9.
    PMID: 37985307 DOI: 10.1016/j.prosdent.2023.10.023
    STATEMENT OF PROBLEM: The 2-implant mandibular overdenture (2IMO) is a popular treatment for patients with mandibular edentulism. However, information on the influence of implant positions on crestal strain is lacking.

    PURPOSE: The purpose of this in vitro study was to evaluate the crestal strain around 2 implants to support mandibular overdentures when placed at different positions.

    MATERIAL AND METHODS: Edentulous mandibles were 3-dimensionally (3D) designed separately with 2 holes for implant placement at similar distances of 5, 10, 15, and 20 mm from the midline, resulting in 4 study conditions. The complete denture models were 3D designed and printed from digital imaging and communications in medicine (DICOM) images after scanning the patient's denture. Two 4.3×12-mm dummy implants were placed in the preplanned holes. Two linear strain gauges were attached on the crest of the mesial and distal side of each implant (CH1, CH2, CH3, and CH4) and connected to a computer to record the electrical signals. Male LOCATOR attachments were attached, the mucosal layer simulated, and the denture picked up with pink female nylon caps. A unilateral and bilateral force of 100 N was maintained for 10 seconds for each model in a universal testing machine while recording the maximum strains in the DCS-100A KYOWA computer software program. Data were analyzed by using 1-way analysis of variance, the Tukey post hoc test, and the paired t test (α=.05).

    RESULTS: Under bilateral loading, the strain values indicated a trend with increasing distance between the implants with both right and left distal strain gauges (CH4 and CH1). The negative (-ve) values indicated the compressive force, and the positive (+ve) values indicated the tensile force being applied on the strain gauges. The strain values for CH4 ranged between -166.08 for the 5-mm and -251.58 for the 20-mm position; and for CH1 between -168.08 for the 5-mm and -297.83 for the 20-mm position. The remaining 2 mesial strain gauges for all 4 implant positions remained lower than for CH4 and CH1. Under unilateral-right loading, only the right-side distal strain gauge CH4 indicated the increasing trend in the strain values with -147.5 for the 5-mm, -157.17 for the 10-mm, -209.33 for the 15-mm, and -234.75 for the 20 mm position. The remaining 3 strain gauges CH3, CH2, and CH1 ranged between -28.33 and -107.17. For each position for both implants, significantly higher (Pimplant crestal strains in the 2IMO increased by increasing the distance of the implants from the midline. The stress values progressively increased from 5 to 10 mm to 15 to 20 mm from midline, represented as lateral incisor, canine, and premolar positions. The distal side of the implants exhibits higher strains than the mesial side of the implants.

    Matched MeSH terms: Dental Prosthesis, Implant-Supported
  12. Patil PG, Seow LL, Uddanwadikar R, Pau A, Ukey PD
    J Prosthet Dent, 2024 Apr;131(4):675-682.
    PMID: 35667890 DOI: 10.1016/j.prosdent.2022.04.018
    STATEMENT OF PROBLEM: The edentulous mandible is commonly treated with a 2-implant overdenture. A change in diameter of the implants may affect the biomechanical behavior of the overdenture, but information on these effects is lacking.

    PURPOSE: The purpose of this 3D finite element analysis study was to evaluate the biomechanical behavior of 2-implant mandibular overdentures (2IMO) and their individual components by using implants of different diameters.

    MATERIAL AND METHODS: A 3D mandibular model was obtained from the cone beam computed tomography (CBCT) images of a 59-year-old edentulous man, and a 3D denture model was developed from intraoral scanning files in the Mimics software program. A 3D model of different diameters of implants (2.5 mm, 3.0 mm, 3.5 mm, and 4.0 mm) with a LOCATOR attachment was developed in the Solidworks software program. Two same-sized implants were inserted in the mandibular model at 10 mm from the midline in the 3Matics software program. A vertical load of 100 N was applied on the first molar region on the right side or both sides in the ANSYS software program. The maximum von Mises stresses and strains were recorded and analyzed.

    RESULTS: Stresses within the implants decreased with an increase in diameter (from 2.5 mm to 3 mm, 3.5 mm, and 4.0 mm) of the implants. The highest stresses were observed with 2.5-mm-diameter implants (0.949 MPa under unilateral and 0.915 MPa under bilateral loading) and the lowest with Ø4-mm implants (0.710 MPa under unilateral and 0.703 MPa under bilateral loading). The strains on the implants ranged between 0.0000056 and 0.0000097, and those on the mandible ranged between 0.0000513 and 0.0000566 across all diameters of the implants without following a specific trend.

    CONCLUSIONS: In 2IMO, the stresses in the implants and mandible decreased with an increase in the diameter of the implants. The implants of lesser diameter (2.5 mm) exhibited the highest stresses and strains, and the implants of the largest diameter (4 mm) exhibited the lowest stresses and strains under unilateral and bilateral loading conditions.

    Matched MeSH terms: Dental Prosthesis, Implant-Supported
  13. Siar CH, Toh CG, Ali TB, Seiz D, Ong ST
    Clin Oral Implants Res, 2012 Apr;23(4):438-46.
    PMID: 21435011 DOI: 10.1111/j.1600-0501.2010.02145.x
    A stable oral mucosa is crucial for long-term survival and biofunctionality of implants. Most of this evidence is derived from clinical and animal studies based solely on implant-supported prosthesis. Much less is known about the dimensions and relationships of this soft tissue complex investing tooth-implant-supported bridgework (TISB). The aim here was to obtain experimental evidence on the dimensional characteristics of oral mucosa around TISB with two different abutment designs.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported*
  14. Baig MR, Rajan G, Rajan M
    J Oral Implantol, 2009;35(6):295-9.
    PMID: 20017646 DOI: 10.1563/AAID-JOI-D-09-00012R1.1
    This article describes the rehabilitation of a completely edentulous patient using a milled titanium implant framework and cemented crowns. This combined approach significantly offsets unsuitable implant position, alignment, or angulation, while ensuring the easy retrievability, repair, and maintenance of the prosthesis. Hence, the dual advantage of cemented-retained crowns reproducing appropriate esthetics and function, irrespective of where the screw access openings are located in the substructure, can be obtained, along with the splinting effect and management of soft and hard tissue deficits achievable with a screw-retained framework.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported*
  15. Zhong J, Guazzato M, Chen J, Zhang Z, Sun G, Huo X, et al.
    J Mech Behav Biomed Mater, 2020 02;102:103490.
    PMID: 31877512 DOI: 10.1016/j.jmbbm.2019.103490
    Mechanical failure of zirconia-based full-arch implant-supported fixed dental prostheses (FAFDPs) remains a critical issue in prosthetic dentistry. The option of full-arch implant treatment and the biomechanical behaviour within a sophisticated screw-retained prosthetic structure have stimulated considerable interest in fundamental and clinical research. This study aimed to analyse the biomechanical responses of zirconia-based FAFDPs with different implant configurations (numbers and distributions), thereby predicting the possible failure sites and the optimum configuration from biomechanical aspect by using finite element method (FEM). Five 3D finite element (FE) models were constructed with patient-specific heterogeneous material properties of mandibular bone. The results were reported using volume-averaged von-Mises stresses (σVMVA) to eliminate numerical singularities. It was found that wider placement of multi-unit copings was preferred as it reduces the cantilever effect on denture. Within the limited areas of implant insertion, the adoption of angled multi-unit abutments allowed the insertion of oblique implants in the bone and wider distribution of the multi-unit copings in the prosthesis, leading to lower stress concentration on both mandibular bone and prosthetic components. Increasing the number of supporting implants in a FAFDPs reduced loading on each implant, although it may not necessarily reduce the stress concentration in the most posterior locations significantly. Overall, the 6-implant configuration was a preferable configuration as it provided the most balanced mechanical performance in this patient-specific case.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported
  16. Tarib NA, Seong TW, Chuen KM, Kun MS, Ahmad M, Kamarudin KH
    Eur J Prosthodont Restor Dent, 2012 Mar;20(1):35-9.
    PMID: 22474935
    This paper aims to evaluate the effect of splinting during implant impression. A master model with two fixtures at the sites of 45 and 47 was used. 20 impressions were made for all four techniques: (A) indirect; (B) direct, unsplinted; (C) direct, splinted; and (D) direct, splinted, sectioned, and re-splinted. Splinting was undertaken with autopolymerizing acrylic resin (AAR). Horizontal distance between fixtures was compared using a digital caliper. The difference in distance were analysed with one-way ANOVA. Group A showed a significantly lowest accuracy among all techniques (p < or = 0.05). There was no significant difference of accuracy among the groups using direct techniques (p > or = 0.05). Group D was more accurate compared to group B and C. We conclude that splinting of impression copings would be beneficial to obtain an accurate impression.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported*
  17. Khuder T, Yunus N, Sulaiman E, Dabbagh A
    J Mech Behav Biomed Mater, 2017 11;75:97-104.
    PMID: 28709037 DOI: 10.1016/j.jmbbm.2017.06.039
    Denture fracture is a common clinical complication caused by improper material selection, design, or fabrication technique. This study aimed to investigate the effect of two attachment systems on fracture risk of the implant-overdentures (IOD) via finite element analysis (FEA), using the force distributions obtained from patients' occlusal analyses and to compare the obtained results with the clinical complications associated with these attachments. A three-dimensional jaw model comprised of the edentulous bones was constructed. Three types of mandibular prostheses including complete denture (CD) (model LCD), IOD with Locator attachment (model LID-L), and IOD with telescopic attachment (model LID-T), as well as a maxillary CD (model UCD) were assembled. The vertical occlusal forces at anterior and posterior quadrants were obtained from the patients wearing mandibular CDs or IODs. The FEA results were further compared with the mechanical failures of different prostheses observed at patient recalls. In overall, the fracture risk of mandibular prostheses was lower than the maxillary compartments. The UCD opposing LCD underwent higher strains than that opposing LID-L and LID-T, which was mostly concentrated at the anterior mid-palatal polished surface. On the other hand, LID-L showed the lowest strain, followed by LID-T, and LCD. The obtained results were consistent with the clinical complications observed in the patient recalls.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported*
  18. Ishak MI, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    Int J Oral Maxillofac Surg, 2012 Sep;41(9):1077-89.
    PMID: 22575179 DOI: 10.1016/j.ijom.2012.04.010
    The aim of this study was to compare two different types of surgical approaches, intrasinus and extramaxillary, for the placement of zygomatic implants to treat atrophic maxillae. A computational finite element simulation was used to analyze the strength of implant anchorage for both approaches in various occlusal loading locations. Three-dimensional models of the craniofacial structures surrounding a region of interest, soft tissue and framework were developed using computed tomography image datasets. The implants were modelled using computer-aided design software. The bone was assumed to be linear isotropic with a stiffness of 13.4 GPa, and the implants were assumed to be made of titanium with a stiffness of 110 GPa. Masseter forces of 300 N were applied at the zygomatic arch, and occlusal loads of 150 N were applied vertically onto the framework surface at different locations. The intrasinus approach demonstrated more satisfactory results and could be a viable treatment option. The extramaxillary approach could also be recommended as a reasonable treatment option, provided some improvements are made to address the cantilever effects seen with that approach.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported
  19. Ishak MI, Kadir MR, Sulaiman E, Kasim NH
    Int J Oral Maxillofac Implants, 2013 May-Jun;28(3):e151-60.
    PMID: 23748334 DOI: 10.11607/jomi.2304
    To compare the extramaxillary approach with the widely used intrasinus approach via finite element method.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported/methods*
  20. Rajan G, Baig MR, Nesan J, Subramanian J
    Indian J Dent Res, 2010 Jan-Mar;21(1):125-8.
    PMID: 20427922 DOI: 10.4103/0970-9290.62801
    Treatment of patients with aggressive periodontitis has always been a challenge to the clinician. Both young and old are known to be affected by this progressive destructive condition of the supporting dental structures. Although dental implants have been offered as a viable treatment alternative for such patients, additional procedures (like bone grafting) and delayed protocols have limited their usage. This case report describes the treatment of a young patient with aggressive periodontitis using a graftless implant solution. Zygoma implants in conjunction with conventional implants were used with immediate loading.
    Matched MeSH terms: Dental Prosthesis, Implant-Supported*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links