Displaying publications 1 - 20 of 1397 in total

Abstract:
Sort:
  1. Karupiah S, Ismail Z
    AAPS PharmSciTech, 2015 Jun;16(3):548-53.
    PMID: 25374344 DOI: 10.1208/s12249-014-0245-1
    Obesity is one of the major public health problems worldwide and it is generally associated with many diseases. Although synthetic drugs are available for the treatment of obesity, herbal remedies may provide safe, natural, and cost-effective alternative to synthetic drugs. One example of such drugs is Melastoma malabathricum var Alba Linn (MM). Although several studies have been reported for the pharmacological activities of MM, there is no report on the anti-obesity effect of MM. The aim of the present study is to evaluate the anti-obesity potential of methanolic extract of MM. The anti-obesity effect of MM on rats fed with a high-fat diet was investigated through determination of the changes in body weight, fat weight, organ weights, and blood biochemicals. The animals in this study were divided into three groups: a normal group with a standard diet (N), a control group fed with high-fat diet (C), and a MM treatment group fed with high-fat (HFD + MM) diet for 8 weeks. There was no significant difference in the amount of food intake between control and HFD + MM treatments. These results also suggest that MM does not induce a dislike for the diet due to its smell or taste. The study shows that MM significantly prevented increases in body weight, cholesterol, LDL, HDL, and total lipids that resulted from the high-fat diet. MM also decreased the epididymal fat (E-fat) and retroperitoneal fat (R-fat) weights and phospholipid concentrations induced by the high-fat diet. On the basis of these findings, it was concluded that MM had anti-obesity effects by suppressing body weight gain and abdominal fat formation.
    Matched MeSH terms: Diet, High-Fat/adverse effects*
  2. Othman MA, Yuyama K, Murai Y, Igarashi Y, Mikami D, Sivasothy Y, et al.
    ACS Med Chem Lett, 2019 Aug 08;10(8):1154-1158.
    PMID: 31413799 DOI: 10.1021/acsmedchemlett.9b00171
    The interaction between natural occurring inhibitors and targeted membrane proteins could be an alternative medicinal strategy for the treatment of metabolic syndrome, notably, obesity. In this study, we identified malabaricones A-C and E (1-4) isolated from the fruits of Myristica cinnamomea King as natural inhibitors for sphingomyelin synthase (SMS), a membrane protein responsible for sphingolipid biosynthesis. Having the most promising inhibition, oral administration of compound 3 exhibited multiple efficacies in reducing weight gain, improving glucose tolerance, and reducing hepatic steatosis in high fat diet-induced obesity mice models. Liver lipid analysis revealed a crucial link between the SMS activities of compound 3 and its lipid metabolism in vitro and in vivo. The nontoxic nature of compound 3 makes it a suitable candidate in search of drugs which can be employed in the treatment and prevention of obesity.
    Matched MeSH terms: Diet, High-Fat
  3. Drewnowski A, Poulain JP
    AMA J Ethics, 2018 10 01;20(10):E987-993.
    PMID: 30346927 DOI: 10.1001/amajethics.2018.987
    Dietary changes that occur in response to economic development are collectively known as the nutrition transition. More specifically, diets built around staple cereals and tubers give way to diets with more animal products and more added sugars and fats. Although the proportion of dietary protein stays constant, plant proteins are replaced by animal proteins but in ways that are dependent on regional cultural, religious, and ethical concerns. The protein transition, viewed here as a subset of the broader nutrition transition, illustrates how dietary patterns in low- and middle-income countries are shaped by societal as well as by economic forces. The complexity of food decisions justifies the need to integrate nutrition with the social sciences in the study of evolving food systems.
    Matched MeSH terms: Diet; Dietary Proteins
  4. Marhani Midin, Nik Ruzyanei Nik Jaafar, Ruzanna Zam Zam, Che Khatijjah Bee Mohd Ali
    MyJurnal
    Objective: To describe the setting up of a pilot project on weight management programme for patients with severe mental illness (SMI) in a general hospital setting, the effectiveness of the programme on 5 patients and the feasibility of such programme to be developed in our local setting. Methods: Key staff members from relevant disciplines were involved through out the programme, which was based on dietary education, exercise and behavioural techniques. It was conducted weekly for physical exercise and biweekly for topic discussion with a total duration of 16 weeks. Results: Patients achieved means (SDs) weight loss of 1.78 (2.83) kg; BMI reduction of 0.92 (1.41) kg/m2; and reduction of waist circumference of 6.8 (4.97) cm. Factors associated with positive health outcome were high baseline BMI, high educational level and committed family members. Conclusion: The programme appears to be effective for patients and is feasible to be developed in Malaysian hospitals.
    Matched MeSH terms: Diet
  5. Abdul Rahim MBH, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, et al.
    Acta Diabetol, 2019 May;56(5):493-500.
    PMID: 30903435 DOI: 10.1007/s00592-019-01312-x
    The human gut is a home for more than 100 trillion bacteria, far more than all other microbial populations resident on the body's surface. The human gut microbiome is considered as a microbial organ symbiotically operating within the host. It is a collection of different cell lineages that are capable of communicating with each other and the host and has an ability to undergo self-replication for its repair and maintenance. As the gut microbiota is involved in many host processes including growth and development, an imbalance in its ecological composition may lead to disease and dysfunction in the human. Gut microbial degradation of nutrients produces bioactive metabolites that bind target receptors, activating signalling cascades, and modulating host metabolism. This review covers current findings on the nutritional and pharmacological roles of selective gut microbial metabolites, short-chain fatty acids, methylamines and indoles, as well as discussing nutritional interventions to modulate the microbiome.
    Matched MeSH terms: Diet*
  6. Dieng H, Satho T, Abang F, Meli NKKB, Ghani IA, Nolasco-Hipolito C, et al.
    Acta Trop, 2017 May;169:84-92.
    PMID: 28174057 DOI: 10.1016/j.actatropica.2017.01.022
    In nature, adult mosquitoes typically utilize nectar as their main energy source, but they can switch to other as yet unidentified sugary fluids. Contemporary lifestyles, with their associated unwillingness to consume leftovers and improper disposal of waste, have resulted in the disposal of huge amounts of waste into the environment. Such refuse often contains unfinished food items, many of which contain sugar and some of which can collect water from rain and generate juices. Despite evidence that mosquitoes can feed on sugar-rich suspensions, semi-liquids, and decaying fruits, which can be abundant in garbage sites, the impacts of sweet waste fluids on dengue vectors are unknown. Here, we investigated the effects of extracts from some familiar sweet home waste items on key components of vectorial capacity of Aedes aegypti. Adult mosquitoes were fed one of five diets in this study: water (WAT); sucrose (SUG); bakery product (remnant of chocolate cake, BAK); dairy product (yogurt, YOG); and fruit (banana (BAN). Differences in survival, response time to host, and egg production were examined between groups. For both males and females, maintenance on BAK extract resulted in marked survival levels that were similar to those seen with SUG. Sweet waste extracts provided better substrates for survival compared to water, but this superiority was mostly seen with BAK. Females maintained on BAK, YOG, and BAN exhibited shorter response times to a host compared to their counterparts maintained on SUG. The levels of egg production were equivalent in waste extract- and SUG-fed females. The findings presented here illustrate the potential of sweet waste-derived fluids to contribute to the vectorial capacity of dengue vectors and suggest the necessity of readdressing the issue of waste disposal, especially that of unfinished sweet foods. Such approaches can be particularly relevant in dengue endemic areas where rainfall is frequent and waste collection infrequent.
    Matched MeSH terms: Diet
  7. Aizzat O, Yap SW, Sopiah H, Madiha MM, Hazreen M, Shailah A, et al.
    Adv Med Sci, 2010;55(2):281-8.
    PMID: 21147697 DOI: 10.2478/v10039-010-0046-z
    Chlorella vulgaris (CV), a fresh water alga has been reported to have hypoglycemic effects. However, antioxidant and anti-inflammatory effects of CV in diabetic animals have not been investigated to date. The aim of the present study was to investigate the role of CV in inflammation and oxidative damage in STZ-induced diabetic rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/diet therapy*
  8. Voon PT, Lee ST, Ng TKW, Ng YT, Yong XS, Lee VKM, et al.
    Adv Nutr, 2019 Jul 01;10(4):647-659.
    PMID: 31095284 DOI: 10.1093/advances/nmy122
    It is not clear whether a saturated fatty acid-rich palm olein diet has any significant adverse effect on established surrogate lipid markers of cardiovascular disease (CVD) risk. We reviewed the effect of palm olein with other oils on serum lipid in healthy adults. We searched in MEDLINE and CENTRAL: Central Register of Controlled Trials from 1975 to January 2018 for randomized controlled trials of ≥2 wk intervention that compared the effects of palm olein (the liquid fraction of palm oil) with other oils such as coconut oil, lard, canola oil, high-oleic sunflower oil, olive oil, peanut oil, and soybean oil on changes in serum lipids. Nine studies were eligible and were included, with a total of 533 and 542 subjects on palm olein and other dietary oil diets, respectively. We extracted and compared all the data for serum lipids, such as total cholesterol (TC), LDL cholesterol, HDL cholesterol, triglyceride, and TC/HDL cholesterol ratio. When comparing palm olein with other dietary oils, the overall weighted mean differences for TC, LDL cholesterol, HDL cholesterol, triglycerides, and the TC/HDL cholesterol ratio were -0.10 (95% CI: -0.30, 0.10; P = 0.34), -0.06 (95% CI: -0.29,0.16; P = 0.59), 0.02 (95% CI: -0.01, 0.04; P = 0.20), 0.01 (95% CI: -0.05, 0.06; P = 0.85), and -0.15 (95% CI: -0.43, 0.14; P = 0.32), respectively. Overall, there are no significant differences in the effects of palm olein intake on lipoprotein biomarkers (P > 0.05) compared with other dietary oils. However, dietary palm olein was found to have effects comparable to those of other unsaturated dietary oils (monounsaturated fatty acid- and polyunsaturated fatty acid-rich oils) but differed from that of saturated fatty acid-rich oils with respect to the serum lipid profile in healthy adults.
    Matched MeSH terms: Diet; Dietary Fats, Unsaturated/administration & dosage; Dietary Fats, Unsaturated/pharmacology
  9. Samad AFA, Kamaroddin MF, Sajad M
    Adv Nutr, 2021 Feb 01;12(1):197-211.
    PMID: 32862223 DOI: 10.1093/advances/nmaa095
    microRNAs (miRNAs) are well known as major players in mammalian and plant genetic systems that act by regulating gene expression at the post-transcriptional level. These tiny molecules can regulate target genes (mRNAs) through either cleavage or translational inhibition. Recently, the discovery of plant-derived miRNAs showing cross-kingdom abilities to regulate mammalian gene expression has prompted exciting discussions among researchers. After being acquired orally through the diet, plant miRNAs can survive in the digestive tract, enter the circulatory system, and regulate endogenous mRNAs. Here, we review current knowledge regarding the cross-kingdom mechanisms of plant miRNAs, related controversies, and potential applications of these miRNAs in dietary therapy, which will provide new insights for plant miRNA investigations related to health issues in humans.
    Matched MeSH terms: Diet
  10. Mensink RP, Sanders TA, Baer DJ, Hayes KC, Howles PN, Marangoni A
    Adv Nutr, 2016 Jul;7(4):719-29.
    PMID: 27422506 DOI: 10.3945/an.115.009662
    A variety of modified fats that provide different functionalities are used in processed foods to optimize product characteristics and nutrient composition. Partial hydrogenation results in the formation of trans FAs (TFAs) and was one of the most widely used modification processes of fats and oils. However, the negative effects of commercially produced TFAs on serum lipoproteins and risk for cardiovascular disease resulted in the Institute of Medicine and the 2010 US Dietary Guidelines for Americans both recommending that TFA intake be as low as possible. After its tentative 2013 determination that use of partially hydrogenated oils is not generally regarded as safe, the FDA released its final determination of the same in 2015. Many food technologists have turned to interesterified fat as a replacement. Interesterification rearranges FAs within and between a triglyceride molecule by use of either a chemical catalyst or an enzyme. Although there is clear utility of interesterified fats for retaining functional properties of food, the nutrition and health implications of long-term interesterified fat consumption are less well understood. The Technical Committee on Dietary Lipids of the North American Branch of the International Life Sciences Institute sponsored a workshop to discuss the health effects of interesterified fats, identify research needs, and outline considerations for the design of future studies. The consensus was that although interesterified fat production is a feasible and economically viable solution for replacing dietary TFAs, outstanding questions must be answered regarding the effects of interesterification on modifying certain aspects of lipid and glucose metabolism, inflammatory responses, hemostatic parameters, and satiety.
    Matched MeSH terms: Diet*; Dietary Fats/pharmacology*
  11. Byrd KA, Shieh J, Mork S, Pincus L, O'Meara L, Atkins M, et al.
    Adv Nutr, 2022 Dec 22;13(6):2458-2487.
    PMID: 36166842 DOI: 10.1093/advances/nmac102
    Fish provide essential nutrients for the critical window of growth and development in the first 1000 d of life and are thus an attractive option for inclusion in nutrition-sensitive and nutrition-specific programming. We conducted a systematic review of the evidence for fish and fish-based products for nutrition and health outcomes during the first 1000 d of life in low- and middle-income countries, searching the peer-reviewed and gray literature from 1999 to 2020. Databases included PubMed, Web of Science, Embase, ProQuest, and the Clinical Trials repository. Our search returned 1135 articles, 39 of which met the inclusion criteria. All studies were dual evaluated for risk of bias. Of the included studies, 18 measured maternal health and nutrition outcomes and 24 measured infant/child outcomes (3 measured both). Our search uncovered 10 impact evaluations, all of which measured consumption of fish or fish-based complementary food products in children aged 6-24 mo. We did not find strong evidence for fish consumption in children improving child growth from the impact evaluations; however, the studies were highly heterogeneous in their design and likely underpowered to detect an effect. Results from observational studies were mixed but provided evidence that adding fish to maternal and child diets is associated with improved nutrition outcomes, such as reducing the risk of anemia and improving vitamin D status. Given the nutrient richness of fish and the fact that production is often more environmentally friendly as compared with other animal source foods, more robust evidence is needed on the role of fish consumption in nutrition interventions to inform policy and programming recommendations in low- and middle-income countries.
    Matched MeSH terms: Diet
  12. Whitton C, Ramos-García C, Kirkpatrick SI, Healy JD, Dhaliwal SS, Boushey CJ, et al.
    Adv Nutr, 2022 Dec 22;13(6):2620-2665.
    PMID: 36041186 DOI: 10.1093/advances/nmac085
    Error in self-reported food and beverage intake affects the accuracy of dietary intake data. Systematically synthesizing available data on contributors to error within and between food groups has not been conducted but may help inform error mitigation strategies. In this review we aimed to systematically identify, quantify, and compare contributors to error in estimated intake of foods and beverages, based on short-term self-report dietary assessment instruments, such as 24-h dietary recalls and dietary records. Seven research databases were searched for studies including self-reported dietary assessment and a comparator measure of observed intake (e.g., direct observation or controlled feeding studies) in healthy adults up until December 2021. Two reviewers independently screened and extracted data from included studies, recording quantitative data on omissions, intrusions, misclassifications, and/or portion misestimations. Risk of bias was assessed using the QualSyst tool. A narrative synthesis focused on patterns of error within and between food groups. Of 2328 articles identified, 29 met inclusion criteria and were included, corresponding to 2964 participants across 15 countries. Most frequently reported contributors to error were omissions and portion size misestimations of food/beverage items. Although few consistent patterns were seen in omission of consumed items, beverages were omitted less frequently (0-32% of the time), whereas vegetables (2-85%) and condiments (1-80%) were omitted more frequently than other items. Both under- and overestimation of portion size was seen for most single food/beverage items within study samples and most food groups. Studies considered and reported error in different ways, impeding the interpretation of how error contributors interact to impact overall misestimation. We recommend that future studies report 1) all error contributors for each food/beverage item evaluated (i.e., omission, intrusion, misclassification, and portion misestimation), and 2) measures of variation of the error. The protocol of this review was registered in PROSPERO as CRD42020202752 (https://www.crd.york.ac.uk/prospero/).
    Matched MeSH terms: Diet
  13. Koo HC, Hadirah Z, Airina A, Nurul Alifatul Amrina R, Faziela N
    Afr Health Sci, 2019 Jun;19(2):2243-2251.
    PMID: 31656510 DOI: 10.4314/ahs.v19i2.50
    BACKGROUND: Dietary composition is the cornerstone of weight management. This study aimed to investigate the effect of nutrient intakes on anthropometric profiles among university students.

    METHODS: This cross-sectional study was conducted among 411 students aged 18-29 years, purposive sampled from a selected private university in Klang Valley, Malaysia. Anthropometric profiles were measured. Nutrient intakes were assessed by 3-day 24-hour diet recalls.

    RESULTS: Respondents on average had adequate macronutrient intakes, however, total consumption of dietary fiber and micronutrients were fell short of recommended levels. Significant negative associations were found between body mass index (BMI) and all the macronutrients, calcium, thiamine, riboflavin and niacin. Body fat percentage was significantly associated with all the macronutrients, calcium, zinc, thiamine and niacin. Significant inverse associations were also found between waist circumference and carbohydrate, fiber, thiamine, riboflavin and niacin. Visceral fat showed significant inverse associations with carbohydrate, fat, fiber, thiamine, riboflavin and niacin. Further, after adjusting for sex, gender and race, BMI was associated with niacin (β=-0.161, p=0.027). Body fat percentage was also found significantly associated with niacin (β=-0.180, p=0.002) and riboflavin (β=-0.132, p=0.014).

    CONCLUSION: Micronutrients, especially B vitamins, are important in weight management among the young adults.

    Matched MeSH terms: Diet Records
  14. Kumar J, Hapidin H, Get Bee YT, Ismail Z
    Alcohol, 2016 Feb;50:9-17.
    PMID: 26626323 DOI: 10.1016/j.alcohol.2015.10.001
    Withdrawal from long-term ethanol consumption results in overexcitation of glutamatergic neurotransmission in the amygdala, which induces an anxiety-like syndrome. Most alcoholics that suffer from such symptoms frequently depend on habitual drinking as self-medication to alleviate their symptoms. Metabotropic glutamate receptor subtype 5 (mGlu5) and protein kinase C (PKC) epsilon have been reported to mediate acute and chronic effects of ethanol. This study explores the changes in mGlu5 and PKC epsilon in the amygdala following acute administration of ethanol during ethanol withdrawal (EW) induced anxiety. Male Wistar rats were fed a modified liquid diet containing low-fat cow milk, sucrose, and maltodextrin, with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into EW, the rats were intraperitoneally injected with normal saline and ethanol (2.5 g/kg, 20% v/v), and exposed to open-field and elevated plus maze tests. Then, amygdala tissue was dissected from the rat brain for Western blot and gene expression studies. EW-induced anxiety was accompanied by a significant increase in mGlu5, total PKC epsilon, and phosphorylated PKC epsilon protein levels, and also of mRNA of mGlu5 (GRM5) in the amygdala. Acute administration of ethanol significantly attenuated EW-induced anxiety as well as an EW-induced increase in GRM5. The acute challenge of ethanol to EW rats had little effect on the phosphorylated and total protein levels of PKC epsilon in the amygdala. Our results demonstrate that amygdala PKC epsilon may not be directly involved in the development of anxiety following EW.
    Matched MeSH terms: Diet
  15. Chun S, Choi Y, Chang Y, Cho J, Zhang Y, Rampal S, et al.
    Am Heart J, 2016 07;177:17-24.
    PMID: 27297845 DOI: 10.1016/j.ahj.2016.03.018
    BACKGROUND: Sugar-sweetened carbonated beverage consumption has been linked to obesity, metabolic syndrome, type 2 diabetes, and clinically manifest coronary heart disease, but its association with subclinical coronary heart disease remains unclear. We investigated the relationship between sugar-sweetened carbonated beverage consumption and coronary artery calcium (CAC) in a large study of asymptomatic men and women.

    METHODS: This was a cross-sectional study of 22,210 adult men and women who underwent a comprehensive health screening examination between 2011 and 2013 (median age 40 years). Sugar-sweetened carbonated beverage consumption was assessed using a validated food frequency questionnaire, and CAC was measured by cardiac computed tomography. Multivariable-adjusted CAC score ratios and 95% CIs were estimated from robust Tobit regression models for the natural logarithm (CAC score +1).

    RESULTS: The prevalence of detectable CAC (CAC score >0) was 11.7% (n = 2,604). After adjustment for age; sex; center; year of screening examination; education level; physical activity; smoking; alcohol intake; family history of cardiovascular disease; history of hypertension; history of hypercholesterolemia; and intake of total energy, fruits, vegetables, and red and processed meats, only the highest category of sugar-sweetened carbonated beverage consumption was associated with an increased CAC score compared with the lowest consumption category. The multivariable-adjusted CAC ratio comparing participants who consumed ≥5 sugar-sweetened carbonated beverages per week with nondrinkers was 1.70 (95% CI, 1.03-2.81). This association did not differ by clinical subgroup, including participants at low cardiovascular risk.

    CONCLUSION: Our findings suggest that high levels of sugar-sweetened carbonated beverage consumption are associated with a higher prevalence and degree of CAC in asymptomatic adults without a history of cardiovascular disease, cancer, or diabetes.

    Matched MeSH terms: Diet
  16. Judge C, O'Donnell MJ, Hankey GJ, Rangarajan S, Chin SL, Rao-Melacini P, et al.
    Am J Hypertens, 2021 04 20;34(4):414-425.
    PMID: 33197265 DOI: 10.1093/ajh/hpaa176
    BACKGROUND: Although low sodium intake (<2 g/day) and high potassium intake (>3.5 g/day) are proposed as public health interventions to reduce stroke risk, there is uncertainty about the benefit and feasibility of this combined recommendation on prevention of stroke.

    METHODS: We obtained random urine samples from 9,275 cases of acute first stroke and 9,726 matched controls from 27 countries and estimated the 24-hour sodium and potassium excretion, a surrogate for intake, using the Tanaka formula. Using multivariable conditional logistic regression, we determined the associations of estimated 24-hour urinary sodium and potassium excretion with stroke and its subtypes.

    RESULTS: Compared with an estimated urinary sodium excretion of 2.8-3.5 g/day (reference), higher (>4.26 g/day) (odds ratio [OR] 1.81; 95% confidence interval [CI], 1.65-2.00) and lower (<2.8 g/day) sodium excretion (OR 1.39; 95% CI, 1.26-1.53) were significantly associated with increased risk of stroke. The stroke risk associated with the highest quartile of sodium intake (sodium excretion >4.26 g/day) was significantly greater (P < 0.001) for intracerebral hemorrhage (ICH) (OR 2.38; 95% CI, 1.93-2.92) than for ischemic stroke (OR 1.67; 95% CI, 1.50-1.87). Urinary potassium was inversely and linearly associated with risk of stroke, and stronger for ischemic stroke than ICH (P = 0.026). In an analysis of combined sodium and potassium excretion, the combination of high potassium intake (>1.58 g/day) and moderate sodium intake (2.8-3.5 g/day) was associated with the lowest risk of stroke.

    CONCLUSIONS: The association of sodium intake and stroke is J-shaped, with high sodium intake a stronger risk factor for ICH than ischemic stroke. Our data suggest that moderate sodium intake-rather than low sodium intake-combined with high potassium intake may be associated with the lowest risk of stroke and expected to be a more feasible combined dietary target.

    Matched MeSH terms: Diet, Sodium-Restricted
  17. Suleiman JB, Abu Bakar AB, Noor MM, Nna VU, Othman ZA, Zakaria Z, et al.
    Am J Physiol Endocrinol Metab, 2021 Sep 01;321(3):E351-E366.
    PMID: 34229480 DOI: 10.1152/ajpendo.00093.2021
    The pituitary-gonadal axis plays an important role in steroidogenesis and spermatogenesis, and by extension, fertility. The aim of this study was to investigate the protective role of bee bread, a natural bee product, against obesity-induced decreases in steroidogenesis and spermatogenesis. Thirty-two adult male Sprague-Dawley rats weighing between 200 and 300 g were divided into four groups (n = 8/group), namely: normal control (NC), high-fat diet (HFD), HFD plus bee bread administered concurrently for 12 wk (HFD + B), HFD plus orlistat administered concurrently for 12 wk (HFD + O) groups. Bee bread (0.5 g/kg) or orlistat (10 mg/kg/day) was suspended in distilled water and given by oral gavage daily for 12 wk. Levels of follicle-stimulating hormone, luteinizing hormone, testosterone, and adiponectin, as well as sperm count, motility, viability, normal morphology, and epididymal antioxidants decreased, whereas levels of leptin, malondialdehyde, and sperm nDNA fragmentation increased significantly in the HFD group relative to the NC group. There were significant decreases in the testicular mRNA transcript levels of androgen receptor, luteinizing hormone receptor, steroidogenic acute regulatory protein, cytochrome P450 enzyme, 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD in the testes of the HFD group. Furthermore, mount, intromission and ejaculatory latencies increased, and penile cGMP level decreased significantly in the HFD group. Supplementation with bee bread significantly reduced leptin level and increased adiponectin level, enhanced sperm parameters and reduced sperm nDNA fragmentation, upregulated the levels of steroidogenic genes and proteins in HFD-induced obese male rats. Bee bread improved steroidogenesis and spermatogenesis by upregulating steroidogenic genes. Therefore, bee bread may be considered as a potential supplementation to protect against infertility in overweight men or men with obesity.NEW & NOTEWORTHY The high-fat diet utilized in the present study induced obesity in the male rats. Bee bread supplementation mitigated impaired steroidogenesis, spermatogenesis, mating behavior, and fertility potential by counteracting the downregulation of steroidogenic genes, thus increasing testosterone levels and suppressing epididymal oxidative stress. These benefits may be due to the abundance of phenolic and flavonoid compounds in bee bread.
    Matched MeSH terms: Diet, High-Fat/adverse effects*
  18. Hong YH, Betik AC, Premilovac D, Dwyer RM, Keske MA, Rattigan S, et al.
    Am J Physiol Regul Integr Comp Physiol, 2015 May 15;308(10):R862-71.
    PMID: 25786487 DOI: 10.1152/ajpregu.00412.2014
    Nitric oxide (NO) has been shown to be involved in skeletal muscle glucose uptake during contraction/exercise, especially in individuals with Type 2 diabetes (T2D). To examine the potential mechanisms, we examined the effect of local NO synthase (NOS) inhibition on muscle glucose uptake and muscle capillary blood flow during contraction in healthy and T2D rats. T2D was induced in Sprague-Dawley rats using a combined high-fat diet (23% fat wt/wt for 4 wk) and low-dose streptozotocin injections (35 mg/kg). Anesthetized animals had one hindlimb stimulated to contract in situ for 30 min (2 Hz, 0.1 ms, 35 V) with the contralateral hindlimb rested. After 10 min, the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME; 5 μM) or saline was continuously infused into the femoral artery of the contracting hindlimb until the end of contraction. Surprisingly, there was no increase in skeletal muscle NOS activity during contraction in either group. Local NOS inhibition had no effect on systemic blood pressure or muscle contraction force, but it did cause a significant attenuation of the increase in femoral artery blood flow in control and T2D rats. However, NOS inhibition did not attenuate the increase in muscle capillary recruitment during contraction in these rats. Muscle glucose uptake during contraction was significantly higher in T2D rats compared with controls but, unlike our previous findings in hooded Wistar rats, NOS inhibition had no effect on glucose uptake during contraction. In conclusion, NOS inhibition did not affect muscle glucose uptake during contraction in control or T2D Sprague-Dawley rats, and this may have been because there was no increase in NOS activity during contraction.
    Matched MeSH terms: Diet, High-Fat
  19. Kanamori T, Kuze N, Bernard H, Malim TP, Kohshima S
    Am J Primatol, 2010 Sep;72(9):820-40.
    PMID: 20653008 DOI: 10.1002/ajp.20848
    We observed the diet and activity of Bornean orangutans (Pongo pygmaeus morio) in the primary lowland dipterocarp forests of Danum Valley, Sabah, Malaysia, during 2005-2007, including two mast fruitings. We collected 1,785 hr of focal data on 26 orangutans. We identified 1,466 samples of their food plants and conducted a fallen fruit census to monitor fruit availability in the study area. Their activity budget was 47.2% feeding, 34.4% resting, and 16.9% traveling. Fruits accounted for the largest part (60.9%) of feeding time, especially during mast fruiting periods (64.0-100%), although the percentages of leaves (22.2%) and bark (12.3%) were higher than those reported for P. abelii and P. pygmaeus wurmbii. Although 119 genera and 160 plant species were consumed by focal animals, only 9 genera accounted for more than 3% of feeding time (total: 67.8% for 9 genera). In particular, the focal orangutans fed intensively on Ficus and Spatholobus during most of the study period, especially in periods of fruit shortage. The percentage of fruit feeding changed markedly from 11.7 to 100% across different months of the year, and was positively correlated with the amount of fallen fruit. When fruit feeding and availability decreased, orangutans fed primarily on leaves of Spatholobus and Ficus, and the bark of Spatholobus and dipterocarp. The percentage of time devoted to feeding during mast fruitings, when the orangutans foraged almost exclusively on fruits, was lower than during seasons when the orangutan diet included leaves and bark as well as fruits. Resting increased as feeding decreased in the late stage of each fruiting season, suggesting that the orangutans adopted an energy-minimizing strategy to survive the periods of fruit shortage by using energy stored during the fruit season.
    Matched MeSH terms: Diet*; Longitudinal Studies
  20. Cao Z, Liang JB, Liao XD, Wright AD, Wu YB, Yu B
    Animal, 2016 Oct;10(10):1666-76.
    PMID: 27052363 DOI: 10.1017/S1751731116000525
    The primary objective of this study was to investigate the effect of dietary fiber on methanogenic diversity and community composition in the hindgut of indigenous Chinese Lantang gilts to explain the unexpected findings reported earlier that Lantang gilts fed low-fiber diet (LFD) produced more methane than those fed high-fiber diet (HFD). In total, 12 Lantang gilts (58.7±0.37 kg) were randomly divided into two dietary groups (six replicates (pigs) per group) and fed either LFD (NDF=201.46 g/kg) or HFD (NDF=329.70 g/kg). Wheat bran was the main source of fiber for the LFD, whereas ground rice hull (mixture of rice hull and rice bran) was used for the HFD. Results showed that the methanogens in the hindgut of Lantang gilts belonged to four known species (Methanobrevibacter ruminantium, Methanobrevibacter wolinii, Methanosphaera stadtmanae and Methanobrevibacter smithii), with about 89% of the methanogens belonging to the genus Methanobrevibacter. The 16S ribosomal RNA (rRNA) gene copies of Methanobrevibacter were more than three times higher (P0.05) was observed in 16S rRNA gene copies of Fibrobacter succinogenes between the two dietary groups, and 18S rRNA gene copies of anaerobic fungi in gilts fed LFD were lower than (P<0.05) those fed HFD. To better explain the effect of different fiber source on the methanogen community, a follow-up in vitro fermentation using a factorial design comprised of two inocula (prepared from hindgut content of gilts fed two diets differing in their dietary fiber)×four substrates (LFD, HFD, wheat bran, ground rice hull) was conducted. Results of the in vitro fermentation confirmed that the predominant methanogens belonged to the genus of Methanobrevibacter, and about 23% methanogens was found to be distantly related (90%) to Thermogymnomonas acidicola. In vitro fermentation also seems to suggest that fiber source did change the methanogens community. Although the density of Methanobrevibacter species was positively correlated with CH4 production in both in vivo (P<0.01, r=0.737) and in vitro trials (P<0.05, r=0.854), which could partly explain the higher methane production from gilts fed LFD compared with those in the HFD group. Further investigation is needed to explain how the rice hull affected the methanogens and inhibited CH4 emission from gilts fed HFD.
    Matched MeSH terms: Diet/veterinary; Dietary Fiber/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links