Displaying all 11 publications

Abstract:
Sort:
  1. He S, Zhao K, Ma L, Yang J, Chang Y, Ashraf MA
    Saudi J Biol Sci, 2016 Mar;23(2):198-204.
    PMID: 26981000 DOI: 10.1016/j.sjbs.2015.10.007
    To discuss the cold resistance performance of different Herba Rhodiolae and successfully transplant Herba Rhodiolae to the Gansu plateau area for nursing, domestication and planting, this paper systematically studies six physiological and biochemical features of Rhodiola kirilowii, Rhodiola algida, Rhodiola crenulata and Herba Rhodiolae that are closely associated with cold resistance features and concludes with the cold resistance capability of Rhodiola kirilowii. In the selected six main indexes of the Herba Rhodiolae, the POD, SOD and CAT activity and MDA and Pro content in the leaf are the main physiological and biochemical indexes to indicate the cold resistance performance of four Herba Rhodiolae seedlings and can be regarded as the preliminary indexes to assess the winter performance of Herba Rhodiolae. The research work will provide the theoretical basis for the wild variants of Herba Rhodiolae and GAPJ base construction.
    Matched MeSH terms: Domestication
  2. Ivorra T, Hauser M, Low VL, Tomberlin JK, Aliah NAN, Cammack JA, et al.
    Insects, 2020 Oct 27;11(11).
    PMID: 33121084 DOI: 10.3390/insects11110737
    Meliponiculture, the keeping of domesticated stingless bees such as Geniotrigona thoracica (Smith, 1857) (Hymenoptera: Apidae), is an increasingly popular agricultural industry in Malaysia. This study reports the soldier fly (Diptera: Stratiomyidae) species of the genus Hermetia colonizing stingless bee colonies in Malaysia. The larvae were reared in the laboratory to the adult stage and identified through molecular and morphological approaches. Hermetia illucens (Linnaeus, 1758) and Hermetia fenestrata de Meijere, 1904 (Diptera: Stratiomyidae) were identified from the sample provided. Earlier records of stratiomyids in stingless bee nests were misidentified as H. illucens. This paper represents the first identified record of H. fenestrata colonizing a "spoiled" stingless bee colony. In addition, adult and larval morphological differences between both species and the roles of both species in bee nest decomposition are discussed.
    Matched MeSH terms: Domestication
  3. Shamsul Bahri, A.R., Asma’-Samsudin
    MyJurnal
    Pollen distribution from the pollen loads of stingless bee foragers in KampungTempinis, Besut, Terengganu was observed and recorded using optical microscope. Heterotrigona itama, one of the most common IndoMalayan stingless bee species domesticated and widely distributed throughout Malaysia was selected for this observation.The objective of this study was to have an annual bee calendar for H. itama in Besut. Pollen collection was carried out twice a month from January to June 2015. Results showed, during the six months period of observation H. itama foraged 31 different flowering plants. Different months of the year showed different floral preference by the stingless bee. The most dominant flower visited by the stingless bee in January and February is Stevia rebaudiana while March to June is Antigonon leptopus (Honolulu creeper). This observation could be useful for conservation purposes and also in planning a good beescape in Malaysia meliponiculture industry.
    Matched MeSH terms: Domestication
  4. Qiu J, Jia L, Wu D, Weng X, Chen L, Sun J, et al.
    Genome Biol, 2020 03 26;21(1):70.
    PMID: 32213201 DOI: 10.1186/s13059-020-01980-x
    BACKGROUND: Worldwide feralization of crop species into agricultural weeds threatens global food security. Weedy rice is a feral form of rice that infests paddies worldwide and aggressively outcompetes cultivated varieties. Despite increasing attention in recent years, a comprehensive understanding of the origins of weedy crop relatives and how a universal feralization process acts at the genomic and molecular level to allow the rapid adaptation to weediness are still yet to be explored.

    RESULTS: We use whole-genome sequencing to examine the origin and adaptation of 524 global weedy rice samples representing all major regions of rice cultivation. Weed populations have evolved multiple times from cultivated rice, and a strikingly high proportion of contemporary Asian weed strains can be traced to a few Green Revolution cultivars that were widely grown in the late twentieth century. Latin American weedy rice stands out in having originated through extensive hybridization. Selection scans indicate that most genomic regions underlying weedy adaptations do not overlap with domestication targets of selection, suggesting that feralization occurs largely through changes at loci unrelated to domestication.

    CONCLUSIONS: This is the first investigation to provide detailed genomic characterizations of weedy rice on a global scale, and the results reveal diverse genetic mechanisms underlying worldwide convergent rice feralization.

    Matched MeSH terms: Domestication
  5. Page A, Gibson J, Meyer RS, Chapman MA
    Mol Biol Evol, 2019 07 01;36(7):1359-1372.
    PMID: 31039581 DOI: 10.1093/molbev/msz062
    In the context of food security, examining the genomics of domestication will help identify genes underlying adaptive and economically important phenotypes, for example, larger fruit, improved taste, and loss of agronomically inferior phenotypes.  Examination of genome-scale single nucleotide polymorphisms demonstrates the relationships between wild ancestors of eggplant (Solanum melongena L.), confirming that Solanum insanum L. is the wild progenitor. This species is split roughly into an Eastern (Malaysian, Thai, and Vietnamese) and Western (Indian, Madagascan, and Sri Lankan) group, with domesticates derived from the former. Additional "wild" accessions from India appear to be feral escapes, derived multiple times from domesticated varieties through admixture. Accessions with small egg-shaped fruit are generally found intermixed with East Asian Solanum insanum confirming they are primitive relative to the large-fruited domesticates.  Comparative transcriptomics was used to track the loci under selection. Sequence analysis revealed a genetic bottleneck reducing variation by almost 50% in the primitive accessions relative to the wild species and a further 10% in the landraces. We also show evidence for selection on genes with a role in response to wounding and apoptosis.  Genes showing a significant difference in expression between wild and primitive or between primitive and landrace genepools were mostly (>75%) downregulated in the derived populations and enriched for gene ontologies related to defense, flowering, signaling, and response to biotic and abiotic stimuli.  This work reveals genomic changes involved in crop domestication and improvement, and the population genetics work explains why defining the eggplant domestication trajectory has been so challenging.
    Matched MeSH terms: Domestication*
  6. Tan WC, Kuppusamy UR, Phan CW, Tan YS, Raman J, Anuar AM, et al.
    Sci Rep, 2015;5:12515.
    PMID: 26213331 DOI: 10.1038/srep12515
    Mushroom cultivation benefits humankind as it deliberately encourages wild mushrooms to be commercially propagated while recycling agricultural wastes. Ganoderma neo-japonicum is a rare polypore mushroom found growing on decaying Schizostachyum brachycladium (a tropical bamboo) clumps in Malaysia. The Malaysian indigenous tribes including the Temuans and Temiars use the basidiocarps of G. neo-japonicum to treat various ailments including diabetes. In this study, the domestication of G. neo-japonicum in artificial logs of different agricultural residues was investigated. Sawdust promoted the mycelia spawn colonisation in the shortest period of 38 ± 0.5 days. However, only sawdust and bamboo dust supported the primodia formation. Complex medium supported mycelium growth in submerged cultures and 27.11 ± 0.43 g/L of mycelia was obtained after 2 weeks of cultivation at 28 °C and 200 rpm. Antioxidant potential in mushroom may be influenced by different cultivation and extraction methods. The different extracts from the wild and cultivated basidiocarps as well as mycelia were then tested for their antioxidant properties. Aqueous and ethanol extracts of mycelia and basidiocarps tested had varying levels of antioxidant activities. To conclude, domestication of wild G. neo-japonicum using agroresidues may ensure a continuous supply of G. neo-japonicum for its medicinal use while ensuring the conservation of this rare species.
    Matched MeSH terms: Domestication
  7. Hoe VB, Siong KH
    Asia Pac J Clin Nutr, 1999 Mar;8(1):24-31.
    PMID: 24393732
    The proximate composition including mineral and vitamin contents of 16 fruits and 46 vegetables (leaves, fruits, palm hearts and shoots) of indigenous origin in Sarawak are provided. Fruits like dabai (Canarium odontophyllum), kembayau (Dacryodes rostrata f. cuspidata), durian nyekak (Durio kutejensis) and durian kuning (Durio graveolens) are very nutritious with high values for energy, protein and potassium. Among the vegetables, the protein content of letup (Passiflora foetida), kepayang (Pangium edule) and tubu (Pycnarrhena tumetacta) is high, ranging from 6 to 7%. The range of nutrients among foods of indigenous origin are generally comparable with those of many cultivated species except for vitamin C, which is lower. Teh Kampung (Leucosyke capitellata) leaves are particularly high in magnesium (626 mg/100 g). Some of the indigenous vegetables contain antinutritional factors. Kepayang has very high levels of hydrogen cyanide (1834 µg/g on dry basis) but this poison can be completely evaporated by boiling. Indigenous fruits and vegetables which are pesticide residue free are important food sources for rural populations. Nutritious indigenous fruits and vegetables have the potential to be promoted for wider use, domestication and commercialization.
    Matched MeSH terms: Domestication
  8. Fahimee J, Badrulisham AS, Zulidzham MS, Reward NF, Muzammil N, Jajuli R, et al.
    Insects, 2021 Feb 28;12(3).
    PMID: 33671045 DOI: 10.3390/insects12030205
    Honey quality is the main criterion used for evaluating honey production in the stingless bee Heterotrigona itama, and it is correlated with the plant species consumed as its main diet. The objective of this study was to obtain the metabarcode data from 12 populations of H. itama species throughout Malaysia (Borneo and Peninsular Malaysia) using the trnL marker. A total of 262 species under 70 families and five phyla of plants were foraged by H. itama in the studied populations. Spermatophyta and Magnoliophyta were recorded as the two most abundant phyla foraged, at 55.95% and 32.39%, respectively. Four species, Garcinia oblongifolia, Muntingia calabura, Mallotus pellatus, and Pinus squamata, occurred abundantly and were consumed by H. itama in all the populations. These data are considered as a fundamental finding that is specific to the diet of H. itama for strategizing the management of the domestication process specifically in a mono-cropping system and in a netted structure. Thus, based on these findings, we recommend Momordica charantia, Melastoma sp., and Cucumis sativa as the best choices of food plant species to be planted and utilized by H. itama in meliponiculture.
    Matched MeSH terms: Domestication
  9. Nayfa MG, Jones DB, Benzie JAH, Jerry DR, Zenger KR
    Front Genet, 2020;11:567969.
    PMID: 33193660 DOI: 10.3389/fgene.2020.567969
    Domestication to captive rearing conditions, along with targeted selective breeding have genetic consequences that vary from those in wild environments. Nile tilapia (Oreochromis niloticus) is one of the most translocated and farmed aquaculture species globally, farmed throughout Asia, North and South America, and its African native range. In Egypt, a breeding program established the Abbassa Strain of Nile tilapia (AS) in 2002 based on local broodstock sourced from the Nile River. The AS has been intensively selected for growth and has gone through genetic bottlenecks which have likely shifted levels and composition of genetic diversity within the strain. Consequently, there are questions on the possible genetic impact AS escapees may have on endemic populations of Nile tilapia. However, to date there have been no genetic studies comparing genetic changes in the domesticated AS to local wild populations. This study used 9,827 genome-wide SNPs to investigate population genetic structure and signatures of selection in the AS (generations 9-11) and eight wild Nile tilapia populations from Egypt. SNP analyses identified two major genetic clusters (captive and wild populations), with wild populations showing evidence of isolation-by-distance among the Nile Delta and upstream riverine populations. Between genetic clusters, approximately 6.9% of SNPs were identified as outliers with outliers identified on all 22 O. niloticus chromosomes. A lack of localized outlier clustering on the genome suggests that no genes of major effect were presently detected. The AS has retained high levels of genetic diversity (Ho_All = 0.21 ± 0.01; He_All = 0.23 ± 0.01) when compared to wild populations (Ho_All = 0.18 ± 0.01; He_All = 0.17 ± 0.01) after 11 years of domestication and selective breeding. Additionally, 565 SNPs were unique within the AS line. While these private SNPs may be due to domestication signals or founder effects, it is suspected that introgression with blue tilapia (Oreochromis aureus) has occurred. This study highlights the importance of understanding the effects of domestication in addition to wild population structure to inform future management and dissemination decisions. Furthermore, by conducting a baseline genetic study of wild populations prior to the dissemination of a domestic line, the effects of aquaculture on these populations can be monitored over time.
    Matched MeSH terms: Domestication
  10. Yang Y, Mi J, Liang J, Liao X, Ma B, Zou Y, et al.
    Front Microbiol, 2019;10:2506.
    PMID: 31736928 DOI: 10.3389/fmicb.2019.02506
    Despite our continuous improvement in understanding the evolution of antibiotic resistance, the changes in the carbon metabolism during the evolution of antibiotic resistance remains unclear. To investigate the evolution of antibiotic resistance and the changes in carbon metabolism under antibiotic pressure, Escherichia coli K-12 was evolved for 38 passages under a concentration gradient of doxycycline (DOX). The 0th-passage sensitive strain W0, the 20th-passage moderately resistant strain M20, and the 38th-passage highly resistant strain E38 were selected for the determination of biofilm formation, colony area, and carbon metabolism levels, as well as genome and transcriptome sequencing. The MIC of DOX with E. coli significantly increased from 4 to 96 μg/ml, and the IC50 increased from 2.18 ± 0.08 to 64.79 ± 0.75 μg/ml after 38 passages of domestication. Compared with the sensitive strain W0, the biofilm formation amount of the resistant strains M20 and E38 was significantly increased (p < 0.05). Single-nucleotide polymorphisms (SNPs) were distributed in antibiotic resistance-related genes such as ribosome targets, cell membranes, and multiple efflux pumps. In addition, there were no mutated genes related to carbon metabolism. However, the genes involved in the biosynthesis of secondary metabolites and carbon metabolism pathway were downregulated, showing a significant decrease in the metabolic intensity of 23 carbon sources (p < 0.05). The results presented here show that there may be a correlation between the evolution of E. coli DOX resistance and the decrease of carbon metabolism, and the mechanism was worthy of further research, providing a theoretical basis for the prevention and control of microbial resistance.
    Matched MeSH terms: Domestication
  11. Wu D, Shen E, Jiang B, Feng Y, Tang W, Lao S, et al.
    Nat Commun, 2022 02 03;13(1):689.
    PMID: 35115514 DOI: 10.1038/s41467-022-28359-9
    As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echinochloa species have been domesticated and cultivated as millets. In order to better understand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative genomic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echinochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.
    Matched MeSH terms: Domestication
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links