Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Mohd Jai NA, Mat Rosly M, Abd Razak NA
    Games Health J, 2021 Apr;10(2):73-82.
    PMID: 33297818 DOI: 10.1089/g4h.2020.0078
    Objective: Studies investigating the effects of exergaming in available platforms are still limited. This review aims to systematically identify available studies on physiological intensities of exergaming boxing in able-bodied adults and recategorize them based on different platforms or environments. The meta-analysis further analyzes the physiological responses during exergaming boxing into a set of pooled data for any evidence of outliers, heterogeneity, or publication bias. Materials and Methods: A systematic search was conducted by using databases from Google Scholar, PubMed, and Web of Science. Population, intervention, comparison, and outcomes (PICO) and preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used in the study selection process for the review. Results: From the 1534 articles examined, 16 articles were included for further analyses. Results indicated that exergaming boxing exhibits a wide range of metabolic equivalent of task (MET) values and intensity, from very light to vigorous, with elements of heterogeneity and bias detected. The Xbox® Kinect boxing platform produced higher MET (mean = 5.3) compared with the Nintendo® Wii™ boxing (mean = 3.8). Conclusion: The results of this review suggest that boxing exergames can produce intensity-adequate physical activity among younger adults that are beneficial for cardiometabolic improvements, regardless of platforms used. Exergaming boxing may be employed as an effective exercise tool to increase energy expenditure and physical activity level in young adults.
    Matched MeSH terms: Energy Metabolism/physiology
  2. Lim LS, Tan SY, Tuzan AD, Kawamura G, Mustafa S, Rahmah S, et al.
    Fish Physiol Biochem, 2020 Aug;46(4):1621-1629.
    PMID: 32430644 DOI: 10.1007/s10695-020-00817-5
    Oxyeleotris marmorata is an ambush predator. It is known for slow growth rate and high market demand. Farming of O. marmorata still remains a challenge. In order to establish a proper feeding practice to stimulate growth, knowledge of its metabolic processes and cost should be examined. Therefore, this study was designed to investigate the diel osmorespiration rhythms of O. marmorata in response to feeding challenge by using an osmorespirometry assay. The results have shown that oxygen consumption rate of the fed fish was approximately 3 times higher than that of the unfed fish in early evening to support specific dynamic action. Digestion and ingestion processes were likely to be completed within 18-20 h in parallel with the ammonia excretion noticeable in early morning. Under resting metabolism, metabolic oxygen consumption was influenced by diel phase, but no effect was noted in ammonia excretion. As a nocturnal species, O. marmorata exhibited standard aerobic metabolic mode under dark phase followed by light phase, with high oxygen consumption rate found in either fed or unfed fish. It can be confirmed that both the diel phase and feeding have a significant interactive impact on oxygen consumption rate, whereas ammonia metabolism is impacted by feeding state. High metabolic rate of O. marmorata supports the nocturnal foraging activity in this fish. This finding suggested that feeding of O. marmorata should be performed during nighttime and water renewal should be conducted during daytime.
    Matched MeSH terms: Energy Metabolism/physiology
  3. Tah PC, Lee ZY, Poh BK, Abdul Majid H, Hakumat-Rai VR, Mat Nor MB, et al.
    Crit Care Med, 2020 05;48(5):e380-e390.
    PMID: 32168031 DOI: 10.1097/CCM.0000000000004282
    OBJECTIVES: Several predictive equations have been developed for estimation of resting energy expenditure, but no study has been done to compare predictive equations against indirect calorimetry among critically ill patients at different phases of critical illness. This study aimed to determine the degree of agreement and accuracy of predictive equations among ICU patients during acute phase (≤ 5 d), late phase (6-10 d), and chronic phase (≥ 11 d).

    DESIGN: This was a single-center prospective observational study that compared resting energy expenditure estimated by 15 commonly used predictive equations against resting energy expenditure measured by indirect calorimetry at different phases. Degree of agreement between resting energy expenditure calculated by predictive equations and resting energy expenditure measured by indirect calorimetry was analyzed using intraclass correlation coefficient and Bland-Altman analyses. Resting energy expenditure values calculated from predictive equations differing by ± 10% from resting energy expenditure measured by indirect calorimetry was used to assess accuracy. A score ranking method was developed to determine the best predictive equations.

    SETTING: General Intensive Care Unit, University of Malaya Medical Centre.

    PATIENTS: Mechanically ventilated critically ill patients.

    INTERVENTIONS: None.

    MEASUREMENTS AND MAIN RESULTS: Indirect calorimetry was measured thrice during acute, late, and chronic phases among 305, 180, and 91 ICU patients, respectively. There were significant differences (F= 3.447; p = 0.034) in mean resting energy expenditure measured by indirect calorimetry among the three phases. Pairwise comparison showed mean resting energy expenditure measured by indirect calorimetry in late phase (1,878 ± 517 kcal) was significantly higher than during acute phase (1,765 ± 456 kcal) (p = 0.037). The predictive equations with the best agreement and accuracy for acute phase was Swinamer (1990), for late phase was Brandi (1999) and Swinamer (1990), and for chronic phase was Swinamer (1990). None of the resting energy expenditure calculated from predictive equations showed very good agreement or accuracy.

    CONCLUSIONS: Predictive equations tend to either over- or underestimate resting energy expenditure at different phases. Predictive equations with "dynamic" variables and respiratory data had better agreement with resting energy expenditure measured by indirect calorimetry compared with predictive equations developed for healthy adults or predictive equations based on "static" variables. Although none of the resting energy expenditure calculated from predictive equations had very good agreement, Swinamer (1990) appears to provide relatively good agreement across three phases and could be used to predict resting energy expenditure when indirect calorimetry is not available.

    Matched MeSH terms: Energy Metabolism/physiology*
  4. Swain N, Samanta L, Agarwal A, Kumar S, Dixit A, Gopalan B, et al.
    Antioxid Redox Signal, 2020 03 10;32(8):504-521.
    PMID: 31691576 DOI: 10.1089/ars.2019.7828
    Aims:
    To understand the molecular pathways involved in oxidative stress (OS)-mediated sperm dysfunction against a hypoxic and hyperthermic microenvironment backdrop of varicocele through a proteomic approach.
    Results:
    Protein selection (261) based on their role in redox homeostasis and/or oxidative/hyperthermic/hypoxic stress response from the sperm proteome data set of unilateral varicocele (UV) in comparison with fertile control displayed 85 to be differentially expressed. Upregulation of cellular oxidant detoxification and glutathione and reduced nicotinamide adenine dinucleotide (NADH) metabolism accompanied with downregulation of protein folding, energy metabolism, and heat stress responses were observed in the UV group. Ingenuity pathway analysis (IPA) predicted suppression of oxidative phosphorylation (OXPHOS) (validated by Western blotting [WB]) along with augmentation in OS and mitochondrial dysfunction in UV. The top affected networks indicated by IPA involved heat shock proteins (HSPs: HSPA2 and HSP90B1). Their expression profile was corroborated by immunocytochemistry and WB. Hypoxia-inducible factor 1A as an upstream regulator of HSPs was predicted by MetaCore. Occurrence of reductive stress in UV spermatozoa was corroborated by thiol redox status.
    Innovation:
    This is the first evidence of a novel pathway showing aberrant redox homeostasis against chronic hypoxic insult in varicocele leading to sperm dysfunction.
    Conclusions:
    Upregulation of antioxidant system and dysfunctional OXPHOS would have shifted the redox balance of biological redox couples (GSH/GSSG, NAD+/NADH, and NADP+/NADPH) to a more reducing state leading to reductive stress. Chronic reductive stress-induced OS may be involved in sperm dysfunction in infertile men with UV, where the role of HSPs cannot be ignored. Intervention with antioxidant therapy warrants proper prior investigation.
    Matched MeSH terms: Energy Metabolism/physiology
  5. Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, et al.
    J Neurochem, 2019 10;151(2):139-165.
    PMID: 31318452 DOI: 10.1111/jnc.14829
    The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
    Matched MeSH terms: Energy Metabolism/physiology*
  6. Lussiana T, Patoz A, Gindre C, Mourot L, Hébert-Losier K
    J Exp Biol, 2019 03 18;222(Pt 6).
    PMID: 30787136 DOI: 10.1242/jeb.192047
    A lower duty factor (DF) reflects a greater relative contribution of leg swing versus ground contact time during the running step. Increasing time on the ground has been reported in the scientific literature to both increase and decrease the energy cost (EC) of running, with DF reported to be highly variable in runners. As increasing running speed aligns running kinematics more closely with spring-mass model behaviours and re-use of elastic energy, we compared the centre of mass (COM) displacement and EC between runners with a low (DFlow) and high (DFhigh) duty factor at typical endurance running speeds. Forty well-trained runners were divided in two groups based on their mean DF measured across a range of speeds. EC was measured from 4 min treadmill runs at 10, 12 and 14 km h-1 using indirect calorimetry. Temporal characteristics and COM displacement data of the running step were recorded from 30 s treadmill runs at 10, 12, 14, 16 and 18 km h-1 Across speeds, DFlow exhibited more symmetrical patterns between braking and propulsion phases in terms of time and vertical COM displacement than DFhigh DFhigh limited global vertical COM displacements in favour of horizontal progression during ground contact. Despite these running kinematics differences, no significant difference in EC was observed between groups. Therefore, both DF strategies seem energetically efficient at endurance running speeds.
    Matched MeSH terms: Energy Metabolism/physiology*
  7. Noroozi S, Ong ZC, Khoo SY, Aslani N, Sewell P
    Prosthet Orthot Int, 2019 Feb;43(1):62-70.
    PMID: 30051756 DOI: 10.1177/0309364618789449
    BACKGROUND:: The current method of prescribing composite running-specific energy-storing-and-returning feet is subjective and is based only on the amputee's static body weight/mass.

    OBJECTIVES:: The aim was to investigate their dynamic characteristics and create a relationship between these dynamic data and the prescription of foot.

    STUDY DESIGN:: Experimental Assessment.

    METHODS:: This article presents the modal analysis results of the full range of Össur Flex-Run™ running feet that are commercially available (1LO-9LO) using experimental modal analysis technique under a constant mass at 53 kg and boundary condition.

    RESULTS:: It was shown that both the undamped natural frequency and stiffness increase linearly from the lowest to the highest stiffness category of foot which allows for a more informed prescription of foot when tuning to a matched natural frequency. The low damping characteristics determined experimentally that ranged between 1.5% and 2.0% indicates that the feet require less input energy to maintain the steady-state cyclic motion before take-off from the ground. An analysis of the mode shapes also showed a unique design feature of these feet that is hypothesised to enhance their performance.

    CONCLUSION:: A better understanding of dynamic characteristics of the feet can help tune the feet to the user's requirements in promoting a better gait performance.

    CLINICAL RELEVANCE: The dynamic data determined from this study are needed to better inform the amputees in predicting the natural frequency of the foot prescribed. The amputees can intuitively tune the cyclic body rhythm during walking or running to match with the natural frequency. This could eventually promote a better gait performance.

    Matched MeSH terms: Energy Metabolism/physiology
  8. Widia M, Md Dawal SZ, Yusoff N
    PLoS One, 2019;14(5):e0216918.
    PMID: 31141545 DOI: 10.1371/journal.pone.0216918
    BACKGROUND: Extensive studies have been carried out over the years to determine the maximum acceptable weight that a worker is capable of lifting in a given situation among Occidental populations across Europe and US. Nonetheless, studies that place emphasis on using lifting frequency as the quantifying task parameter, especially in developing countries such as Malaysia, appear to be in scarcity. Hence, this study determined the maximum acceptable frequency of lift (MAFL) for combined manual material handling (MMH) tasks amongst Malaysian males.

    METHOD: Two lifting loads were considered in this study: 1 kg and 5 kg. Each subject adjusted his frequency of lifting using a psychophysical approach. The subjects were instructed to perform combined MMH task as fast as they could over a period of 45 minutes without exhausting themselves or becoming overheated. The physiological response energy expenditure was recorded during the experimental sessions. The ratings of perceived exertion (RPE) for four body parts (forearms, upper arm, lower back and entire body) were recorded after the subjects had completed the instructed task.

    RESULTS: The mean frequencies of the MMH task had been 6.8 and 5.5 cycles/minute for lifting load of 1 and 5 kg, respectively, while the mean energy expenditure values were 4.16 and 5.62 kcal/min for 1 and 5 kg load, respectively. These displayed a significant difference in the Maximum Acceptable Frequency of Lift (MAFL) between the two loads, energy expenditure and RPE (p < 0.05) whereby the subjects appeared to work harder physiologically for heavier load.

    CONCLUSION: It can be concluded that it is significant to assess physiological response and RPE in determining the maximum acceptable lifting frequency at varied levels of load weight. The findings retrieved in this study can aid in designing tasks that do not exceed the capacity of workers in order to minimise the risk of WRMSDs.

    Matched MeSH terms: Energy Metabolism/physiology*
  9. Jaganathan R, Ravindran R, Dhanasekaran S
    Can J Diabetes, 2018 Aug;42(4):446-456.e1.
    PMID: 29229313 DOI: 10.1016/j.jcjd.2017.10.040
    Adipose tissue is an enormously active endocrine organ, secreting various hormones, such as adiponectin, leptin, resistin and visfatin, together with classical cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). All these adipocytokines play significant roles in the regulation of energy metabolism, glucose and lipid metabolism, reproduction, cardiovascular function and immunity. Adipocytokines are significantly regulated by nutritional status and can directly influence other organ systems, including brain, liver and skeletal muscle. Adiponectin plays a key role as an anti-inflammatory hormone. Upregulated expression of resistin, vaspin, apelin and TNF-α plays a significant role in induction of insulin resistance linked with obesity and type 2 diabetes. Ghrelin, the circulating peptide, has been found to stimulate appetite and regulate energy balance. Thus, it can be considered 1 of the candidate genes for obesity and type 2 diabetes. Omentin is a novel adipokine produced by visceral adipose tissue. Circulating levels of omentin are decreased in insulin-resistant states, for example, in obesity and diabetes. IL-6 plays a vital role in regulating the accumulation of lipids intramyocardially. Based on the biologic relevance of these adipocytokines, they can no longer be considered as energy storage sites alone but must also be considered in metabolic control. Hence, the present review summarizes the regulatory roles of adipocytokines in diabetes linked with obesity.
    Matched MeSH terms: Energy Metabolism/physiology
  10. Clarke K, Ricciardi S, Pearson T, Bharudin I, Davidsen PK, Bonomo M, et al.
    Cell Rep, 2017 Nov 07;21(6):1507-1520.
    PMID: 29117557 DOI: 10.1016/j.celrep.2017.10.040
    Regular endurance training improves muscle oxidative capacity and reduces the risk of age-related disorders. Understanding the molecular networks underlying this phenomenon is crucial. Here, by exploiting the power of computational modeling, we show that endurance training induces profound changes in gene regulatory networks linking signaling and selective control of translation to energy metabolism and tissue remodeling. We discovered that knockdown of the mTOR-independent factor Eif6, which we predicted to be a key regulator of this process, affects mitochondrial respiration efficiency, ROS production, and exercise performance. Our work demonstrates the validity of a data-driven approach to understanding muscle homeostasis.
    Matched MeSH terms: Energy Metabolism/physiology
  11. Mat Rosly M, Mat Rosly H, Hasnan N, Davis GM, Husain R
    Eur J Phys Rehabil Med, 2017 Aug;53(4):527-534.
    PMID: 28092144 DOI: 10.23736/S1973-9087.17.04456-2
    BACKGROUND: Current strategies for increased physical activity and exercise in individuals with spinal cord injury (SCI) face many challenges with regards to maintaining their continuity of participation. Barriers cited often include problems with accessing facilities, mundane, monotonous or boring exercises and expensive equipment that is often not adapted for wheelchair users.

    AIM: To compare the physiological responses and user preferences between conventional heavy-bag boxing against a novel form of video game boxing, known as exergaming boxing.

    DESIGN: Cross-sectional study.

    SETTING: Exercise laboratory setting in a university medical center.

    POPULATION: Seventeen participants with SCI were recruited, of which sixteen were male and only one female. Their mean age was 35.6±10.2 years.

    METHODS: All of them performed a 15-minute physical exercise session of exergaming and heavy-bag boxing in a sitting position. The study assessed physiological responses in terms of oxygen consumption, metabolic equivalent (MET) and energy expenditure between exergaming and heavy-bag boxing derived from open-circuit spirometry. Participants also rated their perceived exertion using Borg's category-ratio ratings of perceived exertion.

    RESULTS: Both exergaming (MET: 4.3±1.0) and heavy-bag boxing (MET: 4.4±1.0) achieved moderate exercise intensities in these participants with SCI. Paired t-test revealed no significant differences (P>0.05, Cohen's d: 0.02-0.49) in the physiological or perceived exertional responses between the two modalities of boxing. Post session user survey reported all the participants found exergaming boxing more enjoyable.

    CONCLUSIONS: Exergaming boxing, was able to produce equipotent physiological responses as conventional heavy-bag boxing. The intensity of both exercise modalities achieved recommended intensities for health and fitness benefits.

    CLINICAL REHABILITATION IMPACT: Exergaming boxing have the potential to provide an enjoyable, self-competitive environment for moderate-vigorous exercise even at the comfort of their homes.

    Matched MeSH terms: Energy Metabolism/physiology*
  12. Furusawa G, Lau NS, Suganthi A, Amirul AA
    Microbiologyopen, 2017 02;6(1).
    PMID: 27987272 DOI: 10.1002/mbo3.405
    The agarolytic bacterium Persicobacter sp. CCB-QB2 was isolated from seaweed (genus Ulva) collected from a coastal area of Malaysia. Here, we report a high-quality draft genome sequence for QB2. The Rapid Annotation using Subsystem Technology (RAST) annotation server identified four β-agarases (PdAgaA, PdAgaB, PdAgaC, and PdAgaD) as well as galK, galE, and phosphoglucomutase, which are related to the Leloir pathway. Interestingly, QB2 exhibited a diauxic growth in the presence of two kinds of nutrients, such as tryptone and agar. In cells grown with agar, the profiles of agarase activity and growth rate were very similar. galK, galE, and phosphoglucomutase genes were highly expressed in the second growth phase of diauxic growth, indicating that QB2 cells use galactose hydrolyzed from agar by its agarases and exhibit nutrient prioritization. This is the first report describing diauxic growth for agarolytic bacteria. QB2 is a potential novel model organism for studying diauxic growth in environmental bacteria.
    Matched MeSH terms: Energy Metabolism/physiology*
  13. Wen HJ, Huang TH, Li TL, Chong PN, Ang BS
    Osteoporos Int, 2017 02;28(2):539-547.
    PMID: 27613719 DOI: 10.1007/s00198-016-3759-4
    Measurement of bone turnover markers is an alternative way to determine the effects of exercise on bone health. A 10-week group-based step aerobics exercise significantly improved functional fitness in postmenopausal women with low bone mass, and showed a positive trend in reducing resorption activity via bone turnover markers.

    INTRODUCTION: The major goal of this study was to determine the effects of short-term group-based step aerobics (GBSA) exercise on the bone metabolism, bone mineral density (BMD), and functional fitness of postmenopausal women (PMW) with low bone mass.

    METHODS: Forty-eight PMW (aged 58.2 ± 3.5 years) with low bone mass (lumbar spine BMD T-score of -2.00 ± 0.67) were recruited and randomly assigned to an exercise group (EG) or to a control group (CG). Participants from the EG attended a progressive 10-week GBSA exercise at an intensity of 75-85 % of heart rate reserve, 90 min per session, and three sessions per week. Serum bone metabolic markers (C-terminal telopeptide of type 1 collagen [CTX] and osteocalcin), BMD, and functional fitness components were measured before and after the training program. Mixed-models repeated measures method was used to compare differences between the groups (α = 0.05).

    RESULTS: After the 10-week intervention period, there was no significant exercise program by time interaction for CTX; however, the percent change for CTX was significantly different between the groups (EG = -13.1 ± 24.4 % vs. CG = 11.0 ± 51.5 %, P 

    Matched MeSH terms: Energy Metabolism/physiology
  14. Rusli MU, Booth DT, Joseph J
    J Exp Biol, 2016 05 15;219(Pt 10):1505-13.
    PMID: 27207954 DOI: 10.1242/jeb.134742
    A potential advantage of group movement in animals is increased locomotion efficiency. This implies a reduced energetic cost for individuals that occur in larger groups such as herds, flocks and schools. When chelonian hatchlings hatch in the underground nest with finite energy for their post-hatching dispersal phase, they face the challenge of minimizing energetic expenditure while escaping the nest. The term 'social facilitation' has been used to describe the combined digging effort of sea turtle hatchlings during nest escape. Given that in a normal clutch, a substantial part of the energy reserve within the residual yolk is used by hatchlings in the digging out process, a decreased cohort size may reduce the energy reserve available to cross the beach and sustain the initial swimming frenzy. This hypothesis was experimentally tested by varying cohort size in hatchling green turtles (Chelonia mydas) and measuring energy expenditure during the nest escape process using open-flow respirometry. The energetic cost of escaping through 40 cm of sand was calculated to vary between 4.4 and 28.3 kJ per individual, the cost decreasing as the number of individuals in the cohort increased. This represents 11-68% of the energy contained in a hatchling's residual yolk at hatching. The reduced energetic cost associated with large cohorts resulted from both a lower metabolic rate per individual and a shortened nest escape time. We conclude that synchronous digging activity of many hatchlings during nest escape evolved not only to facilitate rapid nest emergence but also to reduce the energetic cost to individuals.
    Matched MeSH terms: Energy Metabolism/physiology*
  15. Liew HJ, Fazio A, Faggio C, Blust R, De Boeck G
    PMID: 26219478 DOI: 10.1016/j.cbpa.2015.07.011
    Interacting effects of feeding and stress on corticoid responses in fish were investigated in common carp fed 3.0% or 0.5% body mass (BM) which received no implant, a sham or a cortisol implant (250 mg/kg BM) throughout a 168 hour post-implant period (168 h-PI). At 12h-PI, cortisol implants elevated plasma cortisol, glucose and lactate. Plasma osmolality and ions remained stable, but cortisol increased gill and kidney Na(+)/K(+) ATPase (NKA) and H(+) ATPase activities. Gill NKA activities were higher at 3%-BM, whereas kidney H(+) ATPase activity was greater at 0.5%-BM. Cortisol induced liver protein mobilization and repartitioned liver and muscle glycogen. At 3%-BM, this did not increase plasma ammonia, reflecting improved excretion efficiency concomitant with upregulation of Rhesus glycoprotein Rhcg-1 in gill. Responses in glucocorticoid receptors (GR1/GR2) and mineralocorticoid receptor (MR) to cortisol elevation were most prominent in kidney with increased expression of all receptors at 24 h-PI at 0.5%-BM, but only GR2 and MR at 0.5%-BM. In the liver, upregulation of all receptors occurred at 24 h-PI at 3%-BM, whilst only GR2 and MR were upregulated at 0.5%-BM. In the gill, there was a limited upregulation: GR2 and MR at 72 h-PI and GR1 at 168 h-PI at 3%-BM but only GR2 at 72 h-PI at 0.5%-BM. Thus cortisol elevation led to similar expression patterns of cortisol receptors in both feeding regimes, while feeding affected the type of receptor that was induced. Induction of corticoid receptors occurred simultaneously with increases in Rhcg-1 mRNA expression (gill) but well after NKA and H(+) ATPase activities increased (gill/kidney).
    Matched MeSH terms: Energy Metabolism/physiology
  16. Murugaiyah V, Mattson MP
    Neurochem Int, 2015 Oct;89:271-80.
    PMID: 25861940 DOI: 10.1016/j.neuint.2015.03.009
    The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by 'neurohormetic phytochemicals' (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the prevention and treatment of a range of neurological disorders.
    Matched MeSH terms: Energy Metabolism/physiology*
  17. Moyson S, Liew HJ, Diricx M, Sinha AK, Blust R, De Boeck G
    PMID: 25263807 DOI: 10.1016/j.cbpa.2014.09.017
    In the present study, the combined effects of hypoxia and nutritional status were examined in common carp (Cyprinus carpio), a relatively hypoxia tolerant cyprinid. Fish were either fed or fasted and were exposed to hypoxia (1.5-1.8mg O2L(-1)) at or slightly above their critical oxygen concentration during 1, 3 or 7days followed by a 7day recovery period. Ventilation initially increased during hypoxia, but fasted fish had lower ventilation frequencies than fed fish. In fed fish, ventilation returned to control levels during hypoxia, while in fasted fish recovery only occurred after reoxygenation. Due to this, C. carpio managed, at least in part, to maintain aerobic metabolism during hypoxia: muscle and plasma lactate levels remained relatively stable although they tended to be higher in fed fish (despite higher ventilation rates). However, during recovery, compensatory responses differed greatly between both feeding regimes: plasma lactate in fed fish increased with a simultaneous breakdown of liver glycogen indicating increased energy use, while fasted fish seemed to economize energy and recycle decreasing plasma lactate levels into increasing liver glycogen levels. Protein was used under both feeding regimes during hypoxia and subsequent recovery: protein levels reduced mainly in liver for fed fish and in muscle for fasted fish. Overall, nutritional status had a greater impact on energy reserves than the lack of oxygen with a lower hepatosomatic index and lower glycogen stores in fasted fish. Fasted fish transiently increased Na(+)/K(+)-ATPase activity under hypoxia, but in general ionoregulatory balance proved to be only slightly disturbed, showing that sufficient energy was left for ion regulation.
    Matched MeSH terms: Energy Metabolism/physiology
  18. Sahebi M, Hanafi MM, Siti Nor Akmar A, Rafii MY, Azizi P, Tengoua FF, et al.
    Biomed Res Int, 2015;2015:396010.
    PMID: 25685787 DOI: 10.1155/2015/396010
    Silicon (Si) is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH)4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation.
    Matched MeSH terms: Energy Metabolism/physiology*
  19. Chu AH, Moy FM
    J Sci Med Sport, 2014 Mar;17(2):195-200.
    PMID: 23665093 DOI: 10.1016/j.jsams.2013.04.003
    Metabolic syndrome is a highly prevalent health problem within the adult population in developing countries. We aimed to study the association of physical activity levels and metabolic risk factors among Malay adults in Malaysia.
    Matched MeSH terms: Energy Metabolism/physiology
  20. Justine M, Manaf H, Sulaiman A, Razi S, Alias HA
    Biomed Res Int, 2014;2014:640321.
    PMID: 24977154 DOI: 10.1155/2014/640321
    This study compares energy expenditure (EE), gait parameters (GP), and level of fatigue (LOF) between 5-minute walking with sharp turning (ST) and corner turning (CT). Data were obtained from 29 community-dwelling elderly (mean age, 62.7 ± 3.54 years). For 5 minutes, in ST task, participants walked on a 3-meter pathway with 2 cones placed at each end (180° turning), while in CT task, participants walked on a 6-meter pathway with 4 cones placed at 4 corners (90° turning). The physiological cost index, pedometer, and 10-point Modified Borg Dyspnoea Scale were used to measure EE (beats/min), GP (no of steps), and LOF, respectively. Data were analyzed by using independent t-tests. EE during ST (0.62 ± 0.21 beats/min) was significantly higher than CT (0.48 ± 0.17 beats/min) (P < 0.05). GP (434 ± 92.93 steps) and LOF (1.40 ± 1.11) in ST were found to be lower compared to GP (463 ± 92.18 steps) and LOF (1.54 ± 1.34) in CT (All, P > 0.05). Higher EE in ST could be due to the difficulty in changing to a 180° direction, which may involve agility and different turning strategies (step-turn or pivot-turn) to adjust the posture carefully. In CT, participants could choose a step-turn strategy to change to a 90° direction, which was less challenging to postural control.
    Matched MeSH terms: Energy Metabolism/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links