Displaying all 12 publications

Abstract:
Sort:
  1. Kumar N, Mariappan V, Baddam R, Lankapalli AK, Shaik S, Goh KL, et al.
    Nucleic Acids Res, 2015 Jan;43(1):324-35.
    PMID: 25452339 DOI: 10.1093/nar/gku1271
    The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host-pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner.
    Matched MeSH terms: DNA Restriction-Modification Enzymes/genetics
  2. Zahary MN, Kaur G, Hassan MR, Sidek AS, Singh H, Yeh LY, et al.
    Int J Colorectal Dis, 2014 Feb;29(2):261-2.
    PMID: 24072394 DOI: 10.1007/s00384-013-1770-1
    Matched MeSH terms: DNA Repair Enzymes/genetics*
  3. Yong HS, Cheong WH, Chiang GL, Dhaliwal SS, Loong KP, Sarjan R
    Comp. Biochem. Physiol., B, 1983;76(3):611-3.
    PMID: 6641178
    Three taxa of the malaria mosquito Anopheles balabacensis complex representing three geographical regions (Thailand, Peninsular Malaysia and Sabah) in Southeast Asia, were analysed for genetic variation at 15 gene-enzyme systems. The Sabah taxon was monomorphic for all the 15 gene-enzyme systems. Only two gene-enzyme systems (esterase and glucose phosphate isomerase) were variable in the Thailand and Peninsular Malaysia taxa. The average heterozygosity or gene diversity was 0.007 for the Thailand taxon and 0.028 for the Peninsular Malaysia (Perlis) taxon. There were no unique gene-enzyme markers in the three taxa studied. The average values of genetic identities (0.933-0.997) and genetic distances (0.003-0.069) indicate that these three taxa are of subspecific status.
    Matched MeSH terms: Enzymes/genetics*
  4. Mat Razali N, Hisham SN, Kumar IS, Shukla RN, Lee M, Abu Bakar MF, et al.
    Int J Mol Sci, 2021 Feb 22;22(4).
    PMID: 33671736 DOI: 10.3390/ijms22042183
    Proper management of agricultural disease is important to ensure sustainable food security. Staple food crops like rice, wheat, cereals, and other cash crops hold great export value for countries. Ensuring proper supply is critical; hence any biotic or abiotic factors contributing to the shortfall in yield of these crops should be alleviated. Rhizoctonia solani is a major biotic factor that results in yield losses in many agriculturally important crops. This paper focuses on genome informatics of our Malaysian Draft R. solani AG1-IA, and the comparative genomics (inter- and intra- AG) with four AGs including China AG1-IA (AG1-IA_KB317705.1), AG1-IB, AG3, and AG8. The genomic content of repeat elements, transposable elements (TEs), syntenic genomic blocks, functions of protein-coding genes as well as core orthologous genic information that underlies R. solani's pathogenicity strategy were investigated. Our analyses show that all studied AGs have low content and varying profiles of TEs. All AGs were dominant for Class I TE, much like other basidiomycete pathogens. All AGs demonstrate dominance in Glycoside Hydrolase protein-coding gene assignments suggesting its importance in infiltration and infection of host. Our profiling also provides a basis for further investigation on lack of correlation observed between number of pathogenicity and enzyme-related genes with host range. Despite being grouped within the same AG with China AG1-IA, our Draft AG1-IA exhibits differences in terms of protein-coding gene proportions and classifications. This implies that strains from similar AG do not necessarily have to retain similar proportions and classification of TE but must have the necessary arsenal to enable successful infiltration and colonization of host. In a larger perspective, all the studied AGs essentially share core genes that are generally involved in adhesion, penetration, and host colonization. However, the different infiltration strategies will depend on the level of host resilience where this is clearly exhibited by the gene sets encoded for the process of infiltration, infection, and protection from host.
    Matched MeSH terms: Enzymes/genetics
  5. Li W, Wang F, Wang X, Xu W, Liu F, Hu R, et al.
    J Biochem Mol Toxicol, 2024 Feb;38(2):e23645.
    PMID: 38348716 DOI: 10.1002/jbt.23645
    Prostate cancer (PCa) is an extremely common genitourinary malignancy among elderly men. Many evidence have shown the efficacy of curcumin (CUR) in inhibiting the progression of PCa. However, the pharmacological function of CUR in PCa is still not quite clear. In this research, CUR was found to suppress the proliferation and enhance the apoptotic rate in in vitro PCa cell models in a dose- and time-dependent manner. In a xenograft animal model, the administration of CUR contributed to a significant decrease in the growth of the xenograft tumor induced by the transplanted PC-3 cells. Ubiquitin-conjugating enzyme E2 C is implicated in the modulation of multiple types of cancers. In humans, the expression levels of UBE2C are significantly higher in PCa versus benign prostatic hyperplasia. Treatment with CUR decreased the expression of UBE2C, whereas it increased miR-483-3p expression. In contrast with the control mice, the CUR-treated mice showed a significant reduction in UBE2C and Ki-67 in PCa cells. The capability of proliferation, migration, and invasion of PCa cells was inhibited by the knockdown of UBE2C mediated by siRNA. Furthermore, dual luciferase reporter gene assay indicated the binding of miR-483-3p to UBE2C. In summary, CUR exerts its antitumor effects through regulation of the miR-483-3p/UBE2C axis by decreasing UBE2C and increasing miR-483-3p. The findings may also provide new molecular markers for PCa diagnosis and treatment.
    Matched MeSH terms: Ubiquitin-Conjugating Enzymes/genetics
  6. Yap CK, Tan SG, Ismail A, Omar H
    Environ Int, 2004 Mar;30(1):39-46.
    PMID: 14664863
    It has been widely reported that heavy metal contamination in coastal waters can modify the allozyme profiles of marine organisms. Previous studies have recorded elevated metal concentrations in sediments and mussel tissues off Peninsular Malaysia. In the present study, horizontal starch gel electrophoresis was carried out to estimate the levels of allelic variation of the green-lipped mussel, Perna viridis, collected from one contaminated and three relatively uncontaminated sites off Peninsular Malaysia. Fourteen polymorphic loci were observed. In addition, the concentrations of cadmium, copper, lead, mercury and zinc were determined in the sediments and in the soft tissues of the mussels. Mussels from contaminated site, evidenced by high metal pollution indices (MPI) of the sediment and the mussel tissues, showed the highest percentage of polymorphic loci (78.6%), while those collected from the uncontaminated sites had lower MPI of the sediment and mussel tissue, and exhibited lower percentages of polymorphic loci (35.7-57.1%). The population from the contaminated site showed the highest excess of heterozygosity (0.289) when compared to that of the populations from the three uncontaminated sites (0.108-0.149). Allozyme frequencies at the phosphoglucomutase (PGM; E.C. 2.7.5.1) locus also differed between the contaminated and uncontaminated populations. Previous studies have shown that exposure to heavy metals can select or counter-select for particular alleles at this locus. The present results suggest that allozyme polymorphism in P. viridis is a potential biomonitoring tool for heavy metal contamination but further validation is required.
    Matched MeSH terms: Enzymes/genetics*
  7. Wilson BT, Stark Z, Sutton RE, Danda S, Ekbote AV, Elsayed SM, et al.
    Genet Med, 2016 05;18(5):483-93.
    PMID: 26204423 DOI: 10.1038/gim.2015.110
    PURPOSE: Cockayne syndrome (CS) is a rare, autosomal-recessive disorder characterized by microcephaly, impaired postnatal growth, and premature pathological aging. It has historically been considered a DNA repair disorder; fibroblasts from classic patients often exhibit impaired transcription-coupled nucleotide excision repair. Previous studies have largely been restricted to case reports and small series, and no guidelines for care have been established.

    METHODS: One hundred two study participants were identified through a network of collaborating clinicians and the Amy and Friends CS support groups. Families with a diagnosis of CS could also self-recruit. Comprehensive clinical information for analysis was obtained directly from families and their clinicians.

    RESULTS AND CONCLUSION: We present the most complete evaluation of Cockayne syndrome to date, including detailed information on the prevalence and onset of clinical features, achievement of neurodevelopmental milestones, and patient management. We confirm that the most valuable prognostic factor in CS is the presence of early cataracts. Using this evidence, we have created simple guidelines for the care of individuals with CS. We aim to assist clinicians in the recognition, diagnosis, and management of this condition and to enable families to understand what problems they may encounter as CS progresses.Genet Med 18 5, 483-493.

    Matched MeSH terms: DNA Repair Enzymes/genetics*
  8. Tsai JW, Liew HJ, Jhang JJ, Hung SH, Meng PJ, Leu MY, et al.
    Fish Physiol Biochem, 2018 Apr;44(2):489-502.
    PMID: 29192359 DOI: 10.1007/s10695-017-0448-y
    The mosquitofish (Gambusia affinis) naturally inhabits freshwater (FW; 1-3‰) and seawater (SW; 28-33‰) ponds in constructed wetland. To explore the physiological status and molecular mechanisms for salinity adaptation of the mosquitofish, cytoprotective responses and osmoregulation were examined. In the field study, activation of protein quality control (PQC) mechanism through upregulation of the abundance of heat shock protein (HSP) 90 and 70 and ubiquitin-conjugated proteins was found in the mosquitofish gills from SW pond compared to the individuals of FW pond. The levels of aggregated proteins in mosquitofish gills had no significant difference between FW and SW ponds. Furthermore, the osmoregulatory responses revealed that the body fluid osmolality and muscle water contents of the mosquitofish from two ponds were maintained within a physiological range while branchial Na+/K+-ATPase (NKA) expression was higher in the individuals from SW than FW ponds. Subsequently, to further clarify whether the cellular stress responses and osmoregulation were mainly induced by hypertonicity, a laboratory salinity acclimation experiment was conducted. The results from the laboratory experiment were similar to the field study. Branchial PQC as well as NKA responses were induced by SW acclimation compared to FW-acclimated individuals. Taken together, induction of gill PQC and NKA responses implied that SW represents an osmotic stress for mosquitofish. Activation of PQC was suggested to provide an osmoprotection to prevent the accumulation of aggregated proteins. Moreover, an increase in branchial NKA responses for osmoregulatory adjustment was required for the physiological homeostasis of body fluid osmolality and muscle water content.
    Matched MeSH terms: Ubiquitin-Conjugating Enzymes/genetics
  9. Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, et al.
    Plant Physiol, 2019 02;179(2):544-557.
    PMID: 30459263 DOI: 10.1104/pp.18.01187
    Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and β-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to β-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.
    Matched MeSH terms: Enzymes/genetics*
  10. Cheah PL, Looi LM, Teoh KH, Rahman NA, Wong LX, Tan SY
    Asian Pac J Cancer Prev, 2014;15(7):3287-91.
    PMID: 24815484
    BACKGROUND: The interesting preponderance of Chinese with colorectal carcinoma (CRC) amongst the three major ethnic groups in Malaysia prompted a study to determine DNA mismatch repair (MMR) status in our CRC and attempt correlation with patient age, gender and ethnicity as well as location, grade, histological type and stage of tumour. Histologically re-confirmed CRC, diagnosed between 1st January 2005 and 31st December 2007 at the Department of Pathology, University of Malaya Medical Centre, were immunohistochemically stained with monoclonal antibodies to MMR proteins, MLH1, MSH2, MSH6 and PMS2 on the Ventana Benchmark XT autostainer. Of the 142 CRC cases entered into the study, there were 82 males and 60 females (M:F=1.4:1). Ethnically, 81 (57.0%) were Chinese, 32 (22.5%) Malays and 29 (20.4%) Indians. The patient ages ranged between 15-87 years (mean=62.4 years) with 21 cases <50-years and 121 ≥50-years of age. 14 (9.9%) CRC showed deficient MMR (dMMR). Concurrent loss of MLH1 and PMS2 occurred in 10, MSH2 and MSH6 in 2 with isolated loss of MSH6 in 1 and PMS2 in 1. dMMR was noted less frequently amongst the Chinese (6.2%) in comparison with their combined Malay and Indian counterparts (14.8%), and was associated with right sided and poorly differentiated tumours (p<0.05). 3 of the 5 (60.0%) dMMR CRC cases amongst the Chinese and 1 of 9 cases (11.1%) amongst the combined Malay and Indian group were <50-years of age. No significant association of dMMR was noted with patient age and gender, tumour stage or mucinous type.
    Matched MeSH terms: DNA Repair Enzymes/genetics
  11. Khamisipour G, Jadidi-Niaragh F, Jahromi AS, Zandi K, Hojjat-Farsangi M
    Tumour Biol., 2016 Aug;37(8):10021-39.
    PMID: 27155851 DOI: 10.1007/s13277-016-5059-1
    Resistance to chemotherapy agents is a major challenge infront of cancer patient treatment and researchers. It is known that several factors, such as multidrug resistance proteins and ATP-binding cassette families, are cell membrane transporters that can efflux several substrates such as chemotherapy agents from the cell cytoplasm. To reduce the adverse effects of chemotherapy agents, various targeted-based cancer therapy (TBCT) agents have been developed. TBCT has revolutionized cancer treatment, and several agents have shown more specific effects on tumor cells than chemotherapies. Small molecule inhibitors and monoclonal antibodies are specific agents that mostly target tumor cells but have low side effects on normal cells. Although these agents have been very useful for cancer treatment, however, the presence of natural and acquired resistance has blunted the advantages of targeted therapies. Therefore, development of new options might be necessary. A better understanding of tumor cell resistance mechanisms to current treatment agents may provide an appropriate platform for developing and improving new treatment modalities. Therefore, in this review, different mechanisms of tumor cell resistance to chemotherapy drugs and current targeted therapies have been described.
    Matched MeSH terms: DNA Repair Enzymes/genetics
  12. Smn Mydin RB, Sreekantan S, Hazan R, Farid Wajidi MF, Mat I
    Oxid Med Cell Longev, 2017;2017:3708048.
    PMID: 28337249 DOI: 10.1155/2017/3708048
    Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.
    Matched MeSH terms: DNA Repair Enzymes/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links