Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Lim SW, Lim HY, Kannaiah T, Zuki Z
    Malays Orthop J, 2017 Nov;11(3):50-52.
    PMID: 29326768 MyJurnal DOI: 10.5704/MOJ.1711.004
    Streptococcus constellatus is an extremely rare cause of pyogenic spondylodiscitis. Literature search yielded only one case report in an elderly 72 years old man with spontaneous T10-T11 S. constellatus spondylodiscitis. It is virtually unheard of in young teenage. We report the case of a 14 years old male teenager who presented with worsening low back pain for one year with no neurological deficit. Imaging studies were consistent with features of L4-L5 spondylodiscitis. CT guided biopsy grew a pure culture of streptococcus constellatus sensitive to penicillin and erythromycin. He showed full recovery with six weeks of intravenous antibiotics. Due to the insidious onset, this case highlight the importance of high clinical suspicion and early diagnosis, with image guided biopsy followed by treatment with appropriate intravenous antibiotics to enable full recovery without further neurological deterioration.
    Matched MeSH terms: Erythromycin
  2. Nami Y, Haghshenas B, Haghshenas M, Abdullah N, Yari Khosroushahi A
    Front Microbiol, 2015;6:1317.
    PMID: 26635778 DOI: 10.3389/fmicb.2015.01317
    Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, MCF-7, AGS, HT-29, and Caco-2. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications.
    Matched MeSH terms: Erythromycin
  3. Nami Y, Haghshenas B, Haghshenas M, Yari Khosroushahi A
    Front Microbiol, 2015;6:782.
    PMID: 26284059 DOI: 10.3389/fmicb.2015.00782
    Screening of lactic acid bacteria (LAB) isolated from ewe colostrum led to the identification and isolation of Enterococcus faecium CM33 with interesting features like high survival rates under acidic or bile salts condition, high tolerance for the simulated gastrointestinal condition, and high adhesive potential to Caco-2 cells. According the inhibition of pathogen adhesion test results, this strain can reduce more than 50% adhesion capacity of Escherichia coli, Shigella flexneri, Klebsiella pneumoniae, Listeria monocytogenes, and Staphylococcus aureus to Caco-2 cells. Based on the antibiotic sensitivity test findings, E. faecium CM33 was susceptible to gentamycin, vancomycin, erythromycin, ampicillin, penicillin, tetracycline, and rifampicin, but resistant to chloramphenicol, clindamycin, and kanamycin. Upon assessment of the virulence determinants for E. faecium CM33, this strain was negative for all tested virulence genes. Furthermore, the genome of this strain was evaluated for the incidence of the known enterocin genes by specific PCR amplification and discovered the genes encoding enterocins A, 31, X, and Q. Based on this study findings, the strain E. faecium CM33 can be considered as a valuable nutraceutical and can be introduced as a new potential probiotic.
    Matched MeSH terms: Erythromycin
  4. Ding CH, Wahab AA, Marina Z, Leong CL, Umur N, Wong PF
    Trop Biomed, 2021 Jun 01;38(2):119-121.
    PMID: 34172699 DOI: 10.47665/tb.38.2.045
    Nasopharyngeal diphtheria is an acute infectious upper respiratory tract disease caused by toxigenic strains of Corynebacterium diphtheriae. We report a case of a young adult who presented to us with a short history of fever, sore throat, hoarseness of voice and neck swelling. He claimed to have received all his childhood vaccinations and had no known medical illnesses. During laryngoscopy, a white slough (or membrane) was seen at the base of his tongue. The epiglottis was also bulky and the arytenoids were swollen bilaterally. The membrane was sent to the microbiology laboratory for culture. A diagnosis of nasopharyngeal diphtheria was made clinically and the patient was treated with an antitoxin together with erythromycin, while awaiting the culture result. Nevertheless, the patient's condition deteriorated swiftly and although the laboratory eventually confirmed an infection by toxin-producing C. diphtheriae, the patient had already succumbed to the infection.
    Matched MeSH terms: Erythromycin
  5. Thung TY, Radu S, Mahyudin NA, Rukayadi Y, Zakaria Z, Mazlan N, et al.
    Front Microbiol, 2017;8:2697.
    PMID: 29379488 DOI: 10.3389/fmicb.2017.02697
    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%). Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100%) were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.
    Matched MeSH terms: Erythromycin
  6. Chin SC, Abdullah N, Siang TW, Wan HY
    J Microbiol, 2005 Jun;43(3):251-6.
    PMID: 15995642
    In this study, we assessed the susceptibility of 12 Lactobacillus strains, all of which had been isolated from the gastrointestinal tracts of chicken, to three antibiotics (chloramphenicol, erythromycin and tetracycline) used commonly as selective markers in transformation studies of lactic acid bacteria. Among these strains, 17%, 58%, and 25% were found to exhibit a high degree of resistance to 200 microg/ml of tetracycline, erythromycin, and chloramphenicol, respectively. Seven of the 12 Lactobacillus strains exhibiting resistance to at least 50 microg/ml of chloramphenicol or erythromycin, and five strains exhibiting resistance to at least 50 microg/ml of tetracycline, were subsequently subjected to plasmid curing with chemical curing agents, such as novobiocin, acriflavin, SDS, and ethidium bromide. In no cases did the antibiotic resistance of these strains prove to be curable, with the exception of the erythromycin resistance exhibited by five Lactobacillus strains (L. acidophilus I16 and I26, L. fermentum I24 and C17, and L. brevis C10). Analysis of the plasmid profiles of these five cured derivatives revealed that all of the derivatives, except for L. acidophilus I16, possessed profiles similar to those of wild-type strains. The curing of L. acidophilus I16 was accompanied by the loss of 4.4 kb, 6.1 kb, and 11.5 kb plasmids.
    Matched MeSH terms: Erythromycin/pharmacology
  7. Mansouri-najand L, Saleha AA, Wai SS
    Trop Biomed, 2012 Jun;29(2):231-8.
    PMID: 22735845 MyJurnal
    The objectives of this study were to determine the occurrence of Campylobacter spp. in live chickens sold at wet markets in Selangor, Malaysia and the multidrug resistance (MDR) profiles of the isolates. Cloacal swabs were taken from the chickens before slaughter and their caecal mucosae were swabbed after slaughter. Of the 90 chickens examined, 68 (75.6%) were positive for Campylobacter. Campylobacter were recovered from caecal swabs (53/90) and cloacal swabs (34/90) and Campylobacter coli (46 isolates) were identified slightly more than Campylobacter jejuni (41 isolates), but these differences were not significant (p<0.05). The most frequently observed resistance was to cephalothin (95.5%), followed by tetracycline (80.8%), erythromycin (51.4%), enrofloxacin (42.4%) and gentamicin (24.4%). Multidrug resistance (resistant to four or more antibiotics) was detected in 35.3% isolates. Campylobacter jejuni showed nine resistance profiles and the most common was to gentamicin-eryhtromycin-enrofloxacin-cephalothin-tetracycline (32.4%) combination while C. coli showed six profiles, with cephalothin-tetracycline (32.2%) combination being most common.
    Matched MeSH terms: Erythromycin/pharmacology
  8. Yam WK, Wahab HA
    J Chem Inf Model, 2009 Jun;49(6):1558-67.
    PMID: 19469526 DOI: 10.1021/ci8003495
    Erythromycin A and roxithromycin are clinically important macrolide antibiotics that selectively act on the bacterial 50S large ribosomal subunit to inhibit bacteria's protein elongation process by blocking the exit tunnel for the nascent peptide away from ribosome. The detailed molecular mechanism of macrolide binding is yet to be elucidated as it is currently known to the most general idea only. In this study, molecular dynamics (MD) simulation was employed to study their interaction at the molecular level, and the binding free energies for both systems were calculated using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The calculated binding free energies for both systems were slightly overestimated compared to the experimental values, but individual energy terms enabled better understanding in the binding for both systems. Decomposition of results into residue basis was able to show the contribution of each residue at the binding pocket toward the binding affinity of macrolides and hence identified several key interacting residues that were in agreement with previous experimental and computational data. Results also indicated the contributions from van der Waals are more important and significant than electrostatic contribution in the binding of macrolides to the binding pocket. The findings from this study are expected to contribute to the understanding of a detailed mechanism of action in a quantitative matter and thus assisting in the development of a safer macrolide antibiotic.
    Matched MeSH terms: Erythromycin/metabolism; Erythromycin/chemistry
  9. Lim SY, Yap KP, Thong KL
    Gut Pathog, 2016;8:65.
    PMID: 27999619 DOI: 10.1186/s13099-016-0147-8
    BACKGROUND: Listeria monocytogenes is an important foodborne pathogen that causes considerable morbidity in humans with high mortality rates. In this study, we have sequenced the genomes and performed comparative genomics analyses on two strains, LM115 and LM41, isolated from ready-to-eat food in Malaysia.

    RESULTS: The genome size of LM115 and LM41 was 2,959,041 and 2,963,111 bp, respectively. These two strains shared approximately 90% homologous genes. Comparative genomics and phylogenomic analyses revealed that LM115 and LM41 were more closely related to the reference strains F2365 and EGD-e, respectively. Our virulence profiling indicated a total of 31 virulence genes shared by both analysed strains. These shared genes included those that encode for internalins and L. monocytogenes pathogenicity island 1 (LIPI-1). Both the Malaysian L. monocytogenes strains also harboured several genes associated with stress tolerance to counter the adverse conditions. Seven antibiotic and efflux pump related genes which may confer resistance against lincomycin, erythromycin, fosfomycin, quinolone, tetracycline, and penicillin, and macrolides were identified in the genomes of both strains.

    CONCLUSIONS: Whole genome sequencing and comparative genomics analyses revealed two virulent L. monocytogenes strains isolated from ready-to-eat foods in Malaysia. The identification of strains with pathogenic, persistent, and antibiotic resistant potentials from minimally processed food warrant close attention from both healthcare and food industry.

    Matched MeSH terms: Erythromycin
  10. Tan SC, Chong CW, Teh CSJ, Ooi PT, Thong KL
    PeerJ, 2018;6:e5353.
    PMID: 30123701 DOI: 10.7717/peerj.5353
    Background: Enterococcus faecalis and Enterococcus faecium are ubiquitous opportunistic pathogens found in the guts of humans and farmed animals. This study aimed to determine the occurrence, antimicrobial resistance, virulence, biofilm-forming ability and genotypes of E. faecalis and E. faecium from swine farms. Correlations between the genotypes, virulotypes, antibiotic resistance, and the environmental factors such as locality of farms and farm hygiene practice were explored.

    Methods: E. faecalis and E. faecium strains were isolated from the oral, rectal and fecal samples of 140 pigs; nasal, urine and fecal samples of 34 farmers working in the farms and 42 environmental samples collected from seven swine farms located in Peninsular Malaysia. Antibiotic susceptibility test was performed using the disk diffusion method, and the antibiotic resistance and virulence genes were detected by Polymerase Chain Reaction. Repetitive Extragenic Palindromic-Polymerase Chain Reaction and Pulsed-Field Gel Electrophoresis were performed to determine the clonality of the strains. Crosstab/Chi-square test and DistLM statistical analyses methods were used to determine the correlations between the genotypes, virulence factors, antibiotic resistance, and the environmental factors.

    Results: A total of 211 E. faecalis and 42 E. faecium were recovered from 140 pigs, 34 farmers and 42 environmental samples collected from seven swine farms in Peninsular Malaysia. Ninety-eight percent of the strains were multidrug-resistant (resistant to chloramphenicol, tetracycline, ciprofloxacin and erythromycin). Fifty-two percent of the strains formed biofilms. Virulence genes efa, asaI, gelE, esp, cyl and ace genes were detected. Virulence genes efa and asaI were most prevalent in E. faecalis (90%) and E. faecium (43%), respectively. Cluster analyses based on REP-PCR and PFGE showed the strains were genetically diverse. Overall, the strains isolated from pigs and farmers were distinct, except for three highly similar strains found in pigs and farmers. The strains were regional- and host-specific.

    Discussion: This study revealed alarming high frequencies of multidrug-resistant enterococci in pigs and swine farmers. The presence of resistance and virulence genes and the ability to form biofilm further enhance the persistence and pathogenicity of the strains. Although the overall clonality of the strains were regionals and host-specific, strains with high similarity were found in different hosts. This study reiterates a need of a more stringent regulation to ensure the proper use of antibiotics in swine husbandry to reduce the wide spread of multidrug-resistant strains.

    Matched MeSH terms: Erythromycin
  11. Tang, J.Y.H., Mohamad Ghazali, F., Saleha, A.A., Nishibuchi, M., Son, R.
    MyJurnal
    The aim of this study is to compare the occurrence of thermophilic Campylobacter spp. in chicken retail at wet markets and hypermarkets. Campylobacter contaminations in chicken samples from wet market (70.7%) were comparatively lower than chicken samples sold in hypermarket (91.4%). Of the 77 Campylobacter isolates, 59 (76.6%) were identified as Campylobacter jejuni and 18 (23.4%) isolates were identified as C. coli. All Campylobacterisolates are multi-resistant to the antimicrobial agents. Most of the isolates were resistant to tetracycline (92.2%) and erythromycin (98.7%). This study concluded that chicken samples from both wet market and hypermarket were contaminated with Campylobacter, most of which are antimicrobial-resistant strains.
    Matched MeSH terms: Erythromycin
  12. Chai, L.C., Fatimah, A.B., Ghazali, F.M., Lee, H.Y., Tunung, R., Shamsinar, A.T., et al.
    MyJurnal
    Antibiotic resistance in campylobacter is an emerging global public health problem after MRSA and VRE. Fluoroquinolone and macrolide resistance have been found to be more common in this world leading foodborne pathogen. A total of fifty-six isolates of Campylobacter jejuni obtained from raw vegetables
    which are consumed as ulam (salad) in Malaysia, were tested with 12 antibiotics used clinically and
    agriculturally. The resistance was determined using the disk diffusion method. Results were determined
    by hierarchic numerical methods to cluster strains and antibiotics according to similarity profiles. Fifty
    five C. jejuni isolates from different isolation sites were all clustered together into ten groups. This indicates that the commodities (raw salad vegetables/ulam) where the isolates originated might share a similar source of cross-contamination along the production route. All antibiotics tested correlated and there were four groupings reflecting their mode of actions. Generally, C. jejuni isolates were found to be highly resistant to erythromycin (91.1%) and tetracycline (85.7%). Both agents are popular antibiotics used clinically to treat bacterial infections. On the other hand, the C. jejuni isolates showed high percentage (80.4%) of resistance towards enrofloxacin, an extensively used antimicrobial agent in agriculture practices. This study showed that C. jejuni isolates were highly multi-resistance to as many as 10 antibiotics. Therefore, in terms of biosafety, the presence of antibiotic resistance strains in the food chain has raised concerns that the treatment of human infections will be compromised.
    Matched MeSH terms: Erythromycin
  13. Learn-Han, L., Yoke-Kqueen, C., Shiran, M.S., Sabrina, S., Noor Zaleha, A.S., Sim, J.H., et al.
    MyJurnal
    Fifty-nine isolates of Salmonella enterica subsp. enterica (S. enterica) isolated from indigenous vegetables, ‘selom’ (Oenanthe stolonifera) associated with 13 different serovars were obtained from Chemistry Department of Malaysia. The isolates encompass the common serovar, Salmonella enterica subsp. enterica serovar Weltevreden (S. Weltevreden) (39%) and Salmonella enterica subsp. enterica serovar Agona (S. Agona) (8.5%). Frequencies of the other 11 Salmonella serovars were ranged from 1.7% to 5.1%. All isolates were characterized by Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR), random amplified polymorphic DNA (RAPD), plasmid profiling and antimicrobial susceptibility testing. The results demonstrated ERIC-PCR, RAPD and composite analysis of both are suitable typing methods for S. enterica by demonstrating good discriminative ability and can be utilize as a rapid approach of comparing S. enterica isolates for epidemiological investigation. From this study, ERIC-PCR is exhibited lower discriminatory power when compare with RAPD. On the other hand, plasmid profiles yielded 32 profiles with molecular size ranging from 1129 bp to 17911 bp. Thirteen antimicrobial agents were included in this study and all isolates showed 100% (59/59) resistant to erythromycin and showed Multiple Antimicrobial Resistance (MAR) indexes ranging from 0.08 to 0.68. Dendrogram generated from antimicrobial resistance profiling exhibited poor discriminatory capability at serovar level. Although poultry still remain as the common reservoir for multidrug resistant (MDR) Salmonella. The isolation of 13 Salmonella serovars from selom that showed high MDR in this study is alarming. These results supported the notion that indigenous vegetable (selom) are gaining more antimicrobial resistance and could be potential health hazards.
    Matched MeSH terms: Erythromycin
  14. Najwa, M.S., Rukayadi, Y., Ubong, A., Loo, Y.Y., Chang, W.S., Lye, Y.L., et al.
    MyJurnal
    Salmonella has been reported to be presence both in raw and processed foods worldwide. In this study, the prevalence, quantification and antibiotic susceptibility of Salmonella isolated from raw vegetables or locally known as ulam such as asiatic pennywort (Centella asiatica (L) Urb), water dropwort (Oenanthe javanica (Blume) DC), long bean (Vigna sinensis EndL), and winged bean (Psophocarpus tetragonolobus (L) DC) obtained from retail markets in Selangor, Malaysia were carried out. From 96 samples tested, the overall prevalence of Salmonella spp. was 97.9%, Salmonella Enteritidis was 54.2% and Salmonella Typhimurium was 82.3% respectively. Samples were contaminated with Salmonella ranging from < 3 to 2400 MPN/g. Salmonella Enteritidis and Salmonella Typhimurium isolates obtained from the raw vegetables (ulam) were found to exhibit high resistance against ampicillin (100%), erythromycin (100%), amoxicillin/clavunic acid (81.3%), cephalothin (75%), streptomycin (50%) and ciprofloxacin (50%). All Salmonella isolates showed multi drug resistant (MDR) profile with each isolate being resistant to 3 or more antibiotics. The multiple antibiotic resistance (MAR) index of Salmonella isolates ranged from 0.27 to 0.55 for Salmonella Enteritidis and 0.27 to 0.82 for Salmonella Typhimurium. The presence of Salmonella on raw vegetables (ulam) and high antibiotic resistance isolates indicated that raw vegetables could be contaminated and thus imposes possible health risk to local consumers.
    Matched MeSH terms: Erythromycin
  15. Song JH, Jung SI, Ko KS, Kim NY, Son JS, Chang HH, et al.
    Antimicrob Agents Chemother, 2004 Jun;48(6):2101-7.
    PMID: 15155207
    A total of 685 clinical Streptococcus pneumoniae isolates from patients with pneumococcal diseases were collected from 14 centers in 11 Asian countries from January 2000 to June 2001. The in vitro susceptibilities of the isolates to 14 antimicrobial agents were determined by the broth microdilution test. Among the isolates tested, 483 (52.4%) were not susceptible to penicillin, 23% were intermediate, and 29.4% were penicillin resistant (MICs >/= 2 mg/liter). Isolates from Vietnam showed the highest prevalence of penicillin resistance (71.4%), followed by those from Korea (54.8%), Hong Kong (43.2%), and Taiwan (38.6%). The penicillin MICs at which 90% of isolates are inhibited (MIC(90)s) were 4 mg/liter among isolates from Vietnam, Hong Kong, Korea, and Taiwan. The prevalence of erythromycin resistance was also very high in Vietnam (92.1%), Taiwan (86%), Korea (80.6%), Hong Kong (76.8%), and China (73.9%). The MIC(90)s of erythromycin were >32 mg/liter among isolates from Korea, Vietnam, China, Taiwan, Singapore, Malaysia, and Hong Kong. Isolates from Hong Kong showed the highest rate of ciprofloxacin resistance (11.8%), followed by isolates from Sri Lanka (9.5%), the Philippines (9.1%), and Korea (6.5%). Multilocus sequence typing showed that the spread of the Taiwan(19F) clone and the Spain(23F) clone could be one of the major reasons for the rapid increases in antimicrobial resistance among S. pneumoniae isolates in Asia. Data from the multinational surveillance study clearly documented distinctive increases in the prevalence rates and the levels of antimicrobial resistance among S. pneumoniae isolates in many Asian countries, which are among the highest in the world published to date.
    Matched MeSH terms: Erythromycin/pharmacology
  16. Navindra Kumari Palanisamy, Parasakthi Navaratnam, Shamala Devi Sekaran
    Introduction: Streptococcus pneumoniae is an important bacterial pathogen, causing respiratory infection. Penicillin resistance in S. pneumoniae is associated with alterations in the penicillin binding proteins, while resistance to macrolides is conferred either by the modification of the ribosomal target site or efflux mechanism. This study aimed to characterize S. pneumoniae and its antibiotic resistance genes using 2 sets of multiplex PCRs. Methods: A quintuplex and triplex PCR was used to characterize the pbp1A, ermB, gyrA, ply, and the mefE genes. Fifty-eight penicillin sensitive strains (PSSP), 36 penicillin intermediate strains (PISP) and 26 penicillin resistance strains (PRSP) were used. Results: Alteration in pbp1A was only observed in PISP and PRSP strains, while PCR amplification of the ermB or mefE was observed only in strains with reduced susceptibility to erythromycin. The assay was found to be sensitive as simulated blood cultures showed the lowest level of detection to be 10cfu. Conclusions: As predicted, the assay was able to differentiate penicillin susceptible from the non-susceptible strains based on the detection of the pbp1A gene, which correlated with the MIC value of the strains.
    Matched MeSH terms: Erythromycin
  17. Navindra Kumari Palanisamy, Parasakthi Navaratnam, Shamala Devi Sekaran
    MyJurnal
    Introduction: Streptococcus pneumoniae is an important bacterial pathogen, causing respiratory infection. Penicillin resistance in S. pneumoniae is associated with alterations in the penicillin binding proteins, while resistance to macrolides is conferred either by the modification of the ribosomal target site or efflux mechanism. This study aimed to characterize S. pneumoniae and its antibiotic resistance genes using 2 sets of multiplex PCRs. Methods: A quintuplex and triplex PCR was used to characterize the pbp1A, ermB, gyrA, ply, and the mefE genes. Fifty-eight penicillin sensitive strains (PSSP), 36 penicillin intermediate strains (PISP) and 26 penicillin resistance strains (PRSP) were used. Results: Alteration in pbp1A was only observed in PISP and PRSP strains, while PCR amplification of the ermB or mefE was observed only in strains with reduced susceptibility to erythromycin. The assay was found to be sensitive as simulated blood cultures showed the lowest level of detection to be 10cfu. Conclusions: As predicted, the assay was able to differentiate penicillin susceptible from the non-susceptible strains based on the detection of the pbp1A gene, which correlated with the MIC value of the strains.
    Matched MeSH terms: Erythromycin
  18. Kumari N, Navaratnam P, Sekaran SD
    J Infect Dev Ctries, 2008 Jun 01;2(3):193-9.
    PMID: 19738350
    BACKGROUND: Streptococcus pneumoniae is a major human pathogen. The emergence of penicillin resistant strains since the 1970s has been life threatening and the evolution of the bacteria have enabled itself to develop resistance to many other antibiotics such as the macrolides and the fluoroquinolones. This study aims to characterize S. pneumoniae isolates for the presence of penicillin and macrolide resistance genes.

    METHODOLOGY: One hundred and twenty clinical isolates of S. pneumoniae were obtained from patients of University Malaya Medical Centre (UMMC). The strains were screened using a multiplex real-time PCR method for the presence of alterations in the genes encoding the penicillin binding proteins: pbp2b, macrolide resistance determinant ermB and the pneumolysin gene, ply. Dual-labelled Taqman probes were used in the real-time detection method comprising three different genes labeled with individual fluorophores at different wavelengths. One hundred and twenty isolates from bacterial cultures and isolates directly from blood cultures samples were analyzed using this assay.

    RESULTS: A multiplex PCR comprising the antibiotic resistance genes, ermB and and pneumolysin gene (ply), a S. pneumoniae species specific gene, was developed to characterize strains of S. pneumoniae. Out of the 120 pneumococcal isolates, 58 strains were categorized as Penicillin Sensitive Streptococcus pneumoniae (PSSP), 36 as Penicillin Intermediate Streptococcus pneumoniae (PISP) and 26 as Penicillin Resistant Streptococcus pneumoniae (PRSP). All the 58 PSSP strains harboured the pbp2b gene while the 36 PISP and 26 PRSP strains did not harbour this gene, thus suggesting reduced susceptibility to penicillin. Resistance to erythromycin was observed in 47 of the pneumococcal strains while 15 and 58 were intermediate and sensitive to this drug respectively. Susceptibility testing to other beta-lactams (CTX and CRO) also showed reduced susceptibility among the strains within the PISP and PRSP groups but most PSSP strains were sensitive to other antibiotics.

    CONCLUSION: The characterization of pneumococcal isolates for penicillin and erythromycin resistance genes could be useful to predict the susceptibility of these isolates to other antibiotics, especially beta-lactams drugs. We have developed an assay with a shorter turnaround time to determine the species and resistance profile of Streptococcus pneumoniae with respect to penicillin and macrolides using the Real Time PCR format with fluorescent labeled Taqman probes, hence facilitating earlier and more definitive antimicrobial therapy which may lead to better patient management.

    Matched MeSH terms: Erythromycin/pharmacology
  19. Sabet NS, Subramaniam G, Navaratnam P, Sekaran SD
    Int J Antimicrob Agents, 2007 May;29(5):582-5.
    PMID: 17314034
    A triplex real-time polymerase chain reaction (PCR) assay was used for the simultaneous detection of mecA (methicillin resistance), ermA (erythromycin resistance) and femA (Staphylococcus aureus identification) genes in a single assay. Among 93 clinical S. aureus hospital isolates, there were 48 methicillin-resistant S. aureus (MRSA) and 45 methicillin-sensitive S. aureus (MSSA) isolates. Screening the isolates using the triplex real-time PCR assay, the mecA, ermA and femA genes were detected in all MRSA isolates. The triplex real-time PCR assay was completed within 3h and is a useful genotypic method for detecting the resistance determinants as well as for the identification of S. aureus isolates. These findings will assist the clinical laboratory in identifying these resistance genes and S. aureus rapidly, thus benefiting patient therapy. This study represents a valuable source of information for researchers to study the local antibiotic resistance pattern, which can increase our knowledge of the antibiotic resistance profile, using real-time PCR technology.
    Matched MeSH terms: Erythromycin/pharmacology
  20. Jindal HM, Zandi K, Ong KC, Velayuthan RD, Rasid SM, Samudi Raju C, et al.
    PeerJ, 2017;5:e3887.
    PMID: 29018620 DOI: 10.7717/peerj.3887
    BACKGROUND: Antimicrobial peptides (AMPs) are of great potential as novel antibiotics for the treatment of broad spectrum of pathogenic microorganisms including resistant bacteria. In this study, the mechanisms of action and the therapeutic efficacy of the hybrid peptides were examined.

    METHODS: TEM, SEM and ATP efflux assay were used to evaluate the effect of hybrid peptides on the integrity of the pneumococcal cell wall/membrane. DNA retardation assay was assessed to measure the impact of hybrid peptides on the migration of genomic DNA through the agarose gel. In vitro synergistic effect was checked using the chequerboard assay. ICR male mice were used to evaluate the in vivo toxicity and antibacterial activity of the hybrid peptides in a standalone form and in combination with ceftriaxone.

    RESULTS: The results obtained from TEM and SEM indicated that the hybrid peptides caused significant morphological alterations in Streptococcus pneumoniae and disrupting the integrity of the cell wall/membrane. The rapid release of ATP from pneumococcal cells after one hour of incubation proposing that the antibacterial action for the hybrid peptides is based on membrane permeabilization and damage. The DNA retardation assay revealed that at 62.5 µg/ml all the hybrid peptides were capable of binding and preventing the pneumococcal genomic DNA from migrating through the agarose gel. In vitro synergy was observed when pneumococcal cells treated with combinations of hybrid peptides with each other and with conventional drugs erythromycin and ceftriaxone. The in vivo therapeutic efficacy results revealed that the hybrid peptide RN7-IN8 at 20 mg/kg could improve the survival rate of pneumococcal bacteremia infected mice, as 50% of the infected mice survived up to seven days post-infection. In vivo antibacterial efficacy of the hybrid peptide RN7-IN8 was signficantly improved when combined with the standard antibiotic ceftriaxone at (20 mg/kg + 20 mg/kg) as 100% of the infected mice survived up to seven days post-infection.

    DISCUSSION: Our results suggest that attacking and breaching the cell wall/membrane is most probably the principal mechanism for the hybrid peptides. In addition, the hybrid peptides could possess another mechanism of action by inhibiting intracellular functions such as DNA synthesis. AMPs could play a great role in combating antibiotic resistance as they can reduce the therapeutic concentrations of standard drugs.

    Matched MeSH terms: Erythromycin
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links