Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Yong HS, Mak JW
    Experientia, 1984 Aug 15;40(8):833-4.
    PMID: 6468590
    Glucose phosphate isomerase of subperiodic Brugia malayi was studied by horizontal starch-gel electrophoresis. Two heterophenotypes, each represented by 3 bands of enzyme activity, were found among 38 parasites studied. This finding is attributed to the occurrence of 2 Gpi gene loci.
    Matched MeSH terms: Filarioidea/enzymology*
  2. Yen PK, Mak JW
    Ann Trop Med Parasitol, 1978 Apr;72(2):157-62.
    PMID: 666387
    Histochemical demonstration of acid phosphatase activity in microfilariae gives sufficiently characteristic and consistent results for the differentiation of even closely related species. No difference could be detected among nocturnally periodic, nocturnally subperiodic and diurnally subperiodic Brugia malayi, but they could readily be distinguished from B. pahangi. Similarly, Dirofilaria repens could be readily distinguished from D. immitis and B. booliati from B. sergenti. The enzyme distribution pattern of a Malaysian rural strain of Wuchereria bancrofti was different from those of other regions.
    Matched MeSH terms: Filarioidea/classification*; Filarioidea/enzymology
  3. Yen PK, Zaman V, Mak JW
    J Helminthol, 1982 Mar;56(1):69-80.
    PMID: 7069185
    Infective larvae of Wuchereria, Brugia, Breinlia, Dirofilaria and Setaria species from an experimental vector, Aedes togoi, are compared. The distinctive bubble-like caudal papillae of Wuchereria bancrofti are readily distinguishable from the protuberant ones of Brugia spp; the 'ear-like' papillae of Breinlia are distinct from the 'knob-like' ones of Dirofilaria or the 'thorn-like' terminal papilla of Setaria.
    Matched MeSH terms: Filarioidea/anatomy & histology; Filarioidea/classification*
  4. Yap LF, Ramachandran CP, Balasingam E
    Med J Malaya, 1968 Dec;23(2):118-22.
    PMID: 4240821
    Matched MeSH terms: Filarioidea/isolation & purification*
  5. Yamada M, Shishito N, Nozawa Y, Uni S, Nishioka K, Nakaya T
    Trop Med Health, 2017;45:26.
    PMID: 29118653 DOI: 10.1186/s41182-017-0067-4
    Background: Dirofilaria ursi is a filarial nematode that parasitizes the subcutaneous tissues of the American black bear (Ursus americanus) and Japanese black bear (Ursus thiabetanus japonicus). D. ursi that has parasitized black bears has the potential to subsequently infect humans. In addition, extra-gastrointestinal anisakiasis is less common in Japan.

    Case presentation: We report a case of ventral subcutaneous anisakiasis and dorsal subcutaneous dirofilariasis that was acquired in Fukushima, in the northern part of Japan. The patient was an 83-year-old Japanese female, and subcutaneous parasitic granulomas were present on her left abdomen (near the navel) and left scapula. A pathological examination of the surgically dissected tissue sections from each region demonstrated eosinophilic granulomas containing different species of parasites. To enable the morphological and molecular identification of these parasites, DNA was extracted from paraffin-embedded sections using DEXPAT reagent, and the cytochrome oxidase 2 (COX2), internal transcribed spacer 1 (ITS1), 5.8S and ITS2 regions of the Anisakis larvae, and the 5S rRNA region of the male Dirofilaria were sequenced. The PCR products were examined and compared with DNA databases. Molecular analysis of the COX2 and 5S rRNA sequences of each worm revealed that the nematode found in the ventral region belonged to Anisakis simplex sensu stricto (s.s.) and the male Dirofilaria found in the dorsal region was classified as D. ursi.

    Conclusion: The present case showed a combined human case of D. ursi and A. simplex s.s. infections in subcutaneous tissues. The results of this study will contribute to the identification of unknown parasites in histological sections.
    Matched MeSH terms: Filarioidea
  6. Wilson T, Ramachandran CP
    Ann Trop Med Parasitol, 1971 Dec;65(4):525-46.
    PMID: 4401424
    Matched MeSH terms: Filarioidea/growth & development; Filarioidea/isolation & purification; Filarioidea/pathogenicity
  7. Wilson T
    Bull World Health Organ, 1969;41(2):324-9.
    PMID: 5308708
    Matched MeSH terms: Filarioidea
  8. Vythilingam I, Chiang GL, Lee HL, Singh KI
    PMID: 1363679
    Matched MeSH terms: Filarioidea/physiology*
  9. Uni S, Bain O, Suzuki K, Agatsuma T, Harada M, Motokawa M, et al.
    Parasitol Int, 2013 Feb;62(1):14-23.
    PMID: 22926421 DOI: 10.1016/j.parint.2012.08.004
    Acanthocheilonema delicata n. sp. (Filarioidea: Onchocercidae: Onchocercinae) is described based on adult filarioids and microfilariae obtained from subcutaneous connective tissues and skin, respectively, of Japanese badgers (Meles anakuma) in Wakayama Prefecture, Japan. No endemic species of the genus had been found in Japan. Recently, some filarioids (e.g., Acanthocheilonema reconditum, Dirofilaria spp., and Onchocerca spp.) have come to light as causative agents of zoonosis worldwide. The new species was readily distinguished from its congeners by morphologic characteristics such as body length, body width, esophagus length, spicule length, and the length of microfilariae. Based on the molecular data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene, A. delicata n. sp. was included in the clade of the genus Acanthocheilonema but differed from two other congeneric species available for study, A. viteae and A. reconditum. Acanthocheilonema delicata n. sp. did not harbor Wolbachia. It is likely that the fauna of filarioids from mammals on the Japanese islands is characterized by a high level of endemicity.
    Matched MeSH terms: Filarioidea/anatomy & histology; Filarioidea/classification; Filarioidea/genetics*; Filarioidea/microbiology*; Filarioidea/ultrastructure
  10. Uni S, Bain O, Fujita H, Matsubayashi M, Fukuda M, Takaoka H
    Parasite, 2013;20:1.
    PMID: 23340227 DOI: 10.1051/parasite/2012001
    Hard ticks taken from the Japanese serow, Capricornis crispus, in Yamagata Prefecture, Honshu, harboured infective larvae of onchocercid filariae after incubation from the 22nd to the 158th day. Haemaphysalis flava and H. japonica contained one to eight filarial larvae; females, males and a nymph of the ticks were infected. The 44 infective larvae recovered were 612-1,370 μm long, and 11 of them, 930-1,340 μm long, were studied in detail. The larvae possessed the morphologic characteristics of the larvae of the genus Cercopithifilaria, namely an oesophagus with a posterior glandular part, no buccal capsule and a long tail with three terminal lappets. Five types (A to E) of infective larvae were identified based on the morphologic characteristics. While to date five species of Cercopithifilaria have been described from the Japanese serow, a specific identification of the larvae found in this study was generally not possible. Only type E larvae could be tentatively assigned to Cercopithifilaria tumidicervicata, as they had a cervical swelling similar to that of the adults of this species. A key for the identification of the five larval types is presented. The study presents circumstantial evidences indicating that H. flava and H. japonica may transmit Cercopithifilaria spp. to Japanese serows. It also suggests the possibility that such filarial larvae will be found in hard ticks anywhere, because Cercopithifilaria is distributed worldwide, though this genus generally goes unnoticed, as its microfilariae occur in the skin, not in the blood, of host animals.
    Matched MeSH terms: Filarioidea/anatomy & histology; Filarioidea/classification; Filarioidea/isolation & purification*
  11. Uni S, Mat Udin AS, Agatsuma T, Saijuntha W, Junker K, Ramli R, et al.
    Parasit Vectors, 2017 Apr 20;10(1):194.
    PMID: 28427478 DOI: 10.1186/s13071-017-2105-9
    BACKGROUND: The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia).

    METHODS: We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing.

    RESULTS: Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews.

    CONCLUSIONS: The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani.

    Matched MeSH terms: Filarioidea/anatomy & histology*; Filarioidea/genetics*; Filarioidea/isolation & purification
  12. Tucker MS, Price DL, Kwa BH, DeBaldo AC
    J Parasitol, 2003 Dec;89(6):1220-6.
    PMID: 14740913
    Breinlia booliati Singh and Ho, 1973 is described from the Malaysian wood rat, Rattus rattus jalorensis Bonhote. The parasites presented here were originally discovered in 1955 in Kuantan, Malaysia, but were not classified until now. On the basis of morphological observations of anatomical structures and comparisons with other species of Breinlia, it was determined that the parasites were B. booliati. The parasites discussed here show slight deviation from B. booliati, but they do not warrant a new species classification. There is some variation in anatomical measurements, the number of male caudal papillae, and the morphology of the microfilariae. Breinlia booliati from a new host is described in this article, with a brief discussion on Rattus species that are hosts of B. booliati and vectors that transmit the parasite. The occurrence of B. booliati in R. r. jalorensis represents the first report of the parasite in this host.
    Matched MeSH terms: Filarioidea/anatomy & histology; Filarioidea/classification*
  13. Strauss JM, Sivanandam S
    Med J Malaya, 1966 Jun;20(4):336.
    PMID: 4224351
    Matched MeSH terms: Filarioidea/isolation & purification
  14. Sivanandam S, Mak JW, Lai PF
    PMID: 1145240
    R. sabanus and R. muelleri are very common in the lowland forests of Malaysia. In nature they are infected with Breinlia sp. and D. ramachandrani. In an attempt to determine whether they are also susceptible to subperiodic B. malayi and thereby being potential reservoirs of infection of the disease, 24 R. muelleri and 17 R. sabanus were experimentally infected with the parasite. Results show that although they can support the full development of the parasite, they are poor hosts. This confirms the observation that in Malaysia natural infection of Rattus spp. with the parasite has not been seen. These rats therefore are probably not important in the zoonotic transmission of subperiodic B. malayi in Malaysia.
    Matched MeSH terms: Filarioidea/parasitology*
  15. Sivanandam S, Dondero TJ
    PMID: 5112357
    Matched MeSH terms: Filarioidea/growth & development*; Filarioidea/isolation & purification
  16. Sivanandam S, Sandosham AA
    Med J Malaya, 1968 Mar;22(3):238.
    PMID: 4234713
    Matched MeSH terms: Filarioidea/growth & development*
  17. Sivanandam S, Fredericks HJ
    Med J Malaya, 1966 Jun;20(4):337-8.
    PMID: 4224563
    Matched MeSH terms: Filarioidea/classification*; Filarioidea/cytology*
  18. Sivanandam S, Fredericks HJ
    Med J Malaya, 1968 Mar;22(3):237-8.
    PMID: 4234373
    Matched MeSH terms: Filarioidea*
  19. Singh M, Yap EH, Ho BC, Kang KL, Lim PC
    J Helminthol, 1976 Jun;50(2):103-10.
    PMID: 965704
    The development of Breinlia booliati is described in its natural host, Rattus sabanus and in an inbred strain of laboratory albino rat. The growth of the parasite is similar in both the rat hosts. The third moult occurs between six-eight days and the final moult between 24-28 days. Larvae were recovered initially from the skin and carcass. After five weeks, developing stages were seen only in the thoracic and abdominal cavities, the site of development of the adult worms. Worms became sexually mature by 11-12 weeks and there was considerable growth in length of the female worms after this stage.
    Matched MeSH terms: Filarioidea/anatomy & histology; Filarioidea/growth & development*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links