Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Ibrahim MR, Katman HY, Karim MR, Koting S, Mashaan NS
    ScientificWorldJournal, 2014;2014:240786.
    PMID: 24574875 DOI: 10.1155/2014/240786
    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.
    Matched MeSH terms: Friction*
  2. Salman SD, Kadhum AA, Takriff MS, Mohamad AB
    ScientificWorldJournal, 2013;2013:492762.
    PMID: 24078795 DOI: 10.1155/2013/492762
    Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.
    Matched MeSH terms: Friction
  3. Federle W, Baumgartner W, Hölldobler B
    J Exp Biol, 2004 Jan;207(Pt 1):67-74.
    PMID: 14638834
    Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.
    Matched MeSH terms: Friction
  4. Singh TS, Yusoff AH, Chian YK
    Spine (Phila Pa 1976), 2015 Aug 1;40(15):E866-72.
    PMID: 25996539 DOI: 10.1097/BRS.0000000000000985
    In vitro animal cadaveric study.
    Matched MeSH terms: Friction*
  5. Yasin MH, Ishak A, Pop I
    Sci Rep, 2015;5:17848.
    PMID: 26647651 DOI: 10.1038/srep17848
    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.
    Matched MeSH terms: Friction
  6. Najib N, Bachok N, Arifin NM, Ishak A
    Sci Rep, 2014;4:4178.
    PMID: 24569547 DOI: 10.1038/srep04178
    This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.
    Matched MeSH terms: Friction
  7. Naganthran K, Nazar R, Pop I
    Sci Rep, 2016;6:24632.
    PMID: 27091085 DOI: 10.1038/srep24632
    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.
    Matched MeSH terms: Friction
  8. Abdal S, Hussain S, Siddique I, Ahmadian A, Ferrara M
    Sci Rep, 2021 Apr 08;11(1):7799.
    PMID: 33833251 DOI: 10.1038/s41598-021-86953-1
    It is a theoretical exportation for mass transpiration and thermal transportation of Casson nanofluid over an extending cylindrical surface. The Stagnation point flow through porous matrix is influenced by magnetic field of uniform strength. Appropriate similarity functions are availed to yield the transmuted system of leading differential equations. Existence for the solution of momentum equation is proved for various values of Casson parameter [Formula: see text], magnetic parameter M, porosity parameter [Formula: see text] and Reynolds number Re in two situations of mass transpiration (suction/injuction). The core interest for this study aroused to address some analytical aspects. Therefore, existence of solution is proved and uniqueness of this results is discussed with evaluation of bounds for existence of solution. Results for skin friction factor are established to attain accuracy for large injection values. Thermal and concentration profiles are delineated numerically by applying Runge-Kutta method and shooting technique. The flow speed retards against M, [Formula: see text] and [Formula: see text] for both situations of mass injection and suction. The thermal boundary layer improves with Brownian and thermopherotic diffusions.
    Matched MeSH terms: Friction
  9. Bagheri S, Jamal N, Halilu A, TermehYousefi A
    Sci Rep, 2018 04 18;8(1):6221.
    PMID: 29670168 DOI: 10.1038/s41598-018-23898-y
    Process equipment and facilities are constantly facing the dilemmas of tear and wear. This manuscript introducing functionalized reduced graphene oxide with triazole moiety via click chemistry as a anti-wear additive. While this has been achieved successfully, full characterization of the new anti-wear additive material revealed it to be promising in ameliorating issues of wears. One of the merits of the synthesized material includes reduction of contact asperity as the lipophilic alkyl chain length increases. It has been tested to be functional when formulated as an additive in group III petroleum base oil. Accordingly, it shows an irregularity in renewable base oil. Following screening evaluations of the lipophilic alkyl chain lengths, the additive with twelve carbon atoms; functionalized reduced graphene oxide, rGO-T-C(12) was confirmed to stand out among others with the good reduction of friction coefficient and the least wear scar diameter of ~539.78 µm, compared to the base oil containing no additive.
    Matched MeSH terms: Friction
  10. Bayat M, Alarifi IM, Khalili AA, El-Bagory TMAA, Nguyen HM, Asadi A
    Sci Rep, 2019 Oct 25;9(1):15317.
    PMID: 31653877 DOI: 10.1038/s41598-019-51450-z
    A thermo-elastic contact problem of functionally graded materials (FGMs) rotating brake disk with different pure brake pad areas under temperature dependent material properties is solved by Finite Element Method (FEM). The properties of brake disk change gradually from metal to ceramic by power-law distribution along the radial direction from the inner to the outer surface. Areas of the pure pad are changing while the vertical force is constant. The ratio of brake pad thickness to FGMs brake disk thickness is assumed 0.66. Two sources of thermal loads are considered: (1) Heat generation between the pad and brake disk due to contact friction, and (2) External thermal load due to a constant temperature at inner and outer surfaces. Mechanical responses of FGMs disk are compared with several pad contact areas. The results for temperature-dependent and temperature-independent material properties are investigated and presented. The results show that the absolute value of the shear stress in temperature-dependent material can be greater than that for temperature-independent material. The radial stress for some specific grading index (n = 1.5) is compressive near the inner surface for double contact while it is tensile for a single contact. It is concluded that the radial strain for some specific value of grading index (n = 1) is lower than other FGMs and pure double side contact brake disks.
    Matched MeSH terms: Friction
  11. Firdaus Kamaruzaman, Siti Habibah Shafiai
    MyJurnal
    Lattice Boltzmann Model for Shallow Water Equation with Turbulence Modeling (LABSWETM) is used to study the flow patterns of sidewall friction effects. The lattice Boltzmann method (LBM) approach in recovery the macroscopic governing equation which is shallow water equation from the microscopic flow behavior of particle movement as described by kinetic theory is explored. With the solution of force term to be used in lattice Boltzmann equation, the boundary condition of LBM is explored. With the use of bed and wall friction coefficients, the importance of Manning’s coefficient in determining the outcome of flow patterns simulation is explained. For model verification, the model represents a straight channel with a circular cavity attached to it. The result of this simulation includes the water circulation patterns, cross-section of average velocity distribution, and water depth. For validation, the cross-sections of the model in term of velocity vectors are compared against alternative numerical and experimental data.
    Matched MeSH terms: Friction
  12. Zainuddin N, Saleh H, Hashim I, Roslan R
    Sains Malaysiana, 2016;45:315-321.
    Effects of radiation on free convection about a heated horizontal circular cylinder in the presence of heat generation is investigated numerically. The cylinder is fixed and immersed in a stationary fluid, in which the temperature is uniformly heated about the temperature of the surrounding fluid. The governing equations are transformed into dimensionless non-linear partial differential equations and solved by employing a finite difference method. An implicit finite difference scheme of Crank Nicolson method is used to analyze the results. This study determined the effects of radiation parameter, heat generation parameter, and the Prandtl number, on the temperature and velocity profiles. The results of the local heat transfer and skin-friction coefficient in the presence of radiation for some selected values of and are shown graphically.
    Matched MeSH terms: Friction
  13. Muhammad Khairul Anuar Mohamed, Nor Aida Zuraimi Md Noar, Mohd Zuki Salleh, Anuar Ishak
    Sains Malaysiana, 2016;45:189-296.
    In this paper, the problem of free convection boundary layer flow on a horizontal circular cylinder in a nanofluid with viscous dissipation and constant wall temperature is investigated. The transformed boundary layer equations are solved numerically using finite difference scheme namely the Keller-box method. Numerical solutions were obtained for the reduced skin friction coefficient, Nusselt number and Sherwood number as well as the velocity and temperature profiles.The features of the flow and heat transfer characteristics for various values of the Brownian motion parameter, thermophoresis parameter, Lewis number and Eckert number were analyzed and discussed.
    Matched MeSH terms: Friction
  14. Siti Khuzaimah Soid, Anuar Ishak, Ioan Pop
    Sains Malaysiana, 2018;47:2907-2916.
    The problem of stagnation point flow over a stretching/shrinking sheet immersed in a micropolar fluid is analyzed
    numerically. The governing partial differential equations are transformed into a system of ordinary (similarity) differential
    equation and are then solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The
    effects of various parameters on the velocity and the angular velocity as well as the skin friction coefficient and the couple
    stress are shown in tables and graphs. The noticeable results are found that the micropolar and the slip parameters
    decrease the skin friction coefficient and the couple stress in the existence of magnetic field. Dual solutions appear for
    certain range of the shrinking strength. A stability analysis is performed to determine which one of the solutions is stable.
    Practical applications include polymer extrusion, where one deals with stretching of plastic sheets and in metallurgy
    that involves the cooling of continuous strips.
    Matched MeSH terms: Friction
  15. Kartini Ahmad, Roslinda Nazar, Pop I
    Sains Malaysiana, 2011;40:1291-1296.
    In this paper, the steady Falkner-Skan solution for gravity-driven film flow of a micropolar fluid is theoretically investigated. The resulting nonlinear ordinary differential equations are solved numerically using an implicit finite-difference scheme. The results obtained for the skin friction coefficient as well as the velocity and microrotation or angular velocity profiles are shown in table and figures for different values of the material or micropolar parameter K.
    Matched MeSH terms: Friction
  16. Norfifah Bachok, Anuar Ishak
    Sains Malaysiana, 2011;40:1297-1300.
    This paper presents a numerical analysis of a stagnation-point flow towards a nonlinearly stretching/shrinking sheet immersed in a viscous fluid. The stretching/shrinking velocity and the external flow velocity impinges normal to the stretching/shrinking sheet are assumed to be in the form U ~ xm, where m is a constant and x is the distance from the stagnation point. The governing partial differential equations are converted into ordinary ones by a similarity transformation, before being solved numerically. The variations of the skin friction coefficient and the heat transfer rate at the surface with the governing parameters are graphed and tabulated. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique for m > 1/3.
    Matched MeSH terms: Friction
  17. Chang BP, Hazizan Md Akil, Ramdziah bt Md Nasir
    Sains Malaysiana, 2015;44:819-825.
    As of today, ultra-high molecular weight polyethylene (UHMWPE) is a thermoplastic material normally used as bearing
    components for human joint replacements. However, formation of wear debris from UHMWPE after certain service
    periods may cause adverse effects which remain as unresolved issues. In this study, mechanical and dry sliding wear
    properties of UHMWPE reinforced with different loading of talc particles were investigated. The wear test was carried
    out using Ducom TR-20 pin-on-disc tester at different pressure velocity (pv) factors under dry sliding conditions. The
    worn surfaces and transfer films of pure UHMWPE and talc/UHMWPE composites were observed under scanning electron
    microscope (SEM). The experimental results showed that the microhardness increased with the increase of talc loadings
    in UHMWPE. The 20 wt. % talc/UHMWPE composites showed a 17% increment in microhardness as compared with pure
    UHMWPE. The dry sliding wear behaviour of UHMWPE was also improved upon the reinforcement of talc. The wear rate
    of UHMWPE decreased after incorporation of talc particles. The coefficient of friction (COF) increased slightly under low
    pv conditions. At high pv conditions, the COF decreased in values with increasing talc loadings. The improvement in
    wear behaviour may be attributed to the increase in load-carrying capacity and surface hardness of the talc/UHMWPE
    composites. SEM micrographs on worn surfaces showed that plastic deformation and grooving wear were dominant for
    UHMWPE. The plastic deformation and grooving wear were reduced upon the reinforcement of talc particles. The talc/
    UHMWPE composites produced smoother and uniform transfer films as compared to pure UHMWPE.
    Matched MeSH terms: Friction
  18. AHMAD SHAHIR BIN JAMALUDIN, ABDULLAH BIN YASSIN
    Sains Malaysiana, 2013;42:1727-1733.
    Invention of milling combined laser sintering system (MLSS) is able to reduce the mould manufacturing time and improve the mould accuracy. Thus, more study is needed to increase the understanding for the laser sintered material machining characteristic to gain benefit from the invention of MLSS. This paper clarified the analysis of laser sintered material machinability with the application of Finite Element Method (FEM). Mild steel AISI1055 was applied in developing the Finite Element model in this study due to its popularity in machinability test and adequate level of data availability. 2D orthogonal cutting was employed on edge design tools with updated Lagrangian coupled thermo mechanical plane strain model. Adaptive meshing, tool edge radius and various types of friction models were assigned to obtain efficient simulations and precise cutting results. Cutting force and cutting-edge temperature estimated by Finite Element Method are validated against corresponding experimental values by previous researchers. In the study, cutting force increases when radial depth increases and lowest error acquired when the shear friction factor of 0.8 was applied. Machining simulation for laser sintered materials estimated lower cutting force compared with mild steel AISI1055 due to lower Young modulus. Higher cutting temperature estimated for machining simulation laser sintered material compared with machining simulation mild steel AISI1055 due to its low thermal conductivity.
    Matched MeSH terms: Friction
  19. Tham L, Roslindar Nazar
    Sains Malaysiana, 2012;41:1643-1649.
    A steady laminar mixed convection boundary layer flow about an isothermal solid sphere embedded in a porous medium filled with a nanofluid has been studied for both cases of assisting and opposing flows. The transformed boundary layer equations were solved numerically using an implicit finite-difference scheme. Three different types of nanoparticles, namely Cu, Al2O3 and TiO2 in water-based fluid were considered. Numerical solutions were obtained for the skin friction coefficient, the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the nanoparticle volume fraction and the mixed convection parameters were analyzed and discussed.
    Matched MeSH terms: Friction
  20. Chong MM, Chang SY, Noraiham Muhammad, Zulkifli Mord Rosli, Qumrul Ahsan
    Sains Malaysiana, 2014;43:959-966.
    Dry sliding wear of polyester hybrid composites containing carboxylic functionalized multi-walled carbon nanotubes (cNT) and microparticles, silica (Si02) was studied at different sliding distances. An attempt has been made to produce uniform dispersion of nano- and micro- particles in the test samples by ultrasonication. The tribological properties of the hybrid composites were performed by using pin-on-disc (POD) tester against grey cast iron countersurface. The dry sliding wear tests were carried out under pressure-velocity (pv) condition of 0.4 MPa and 4 m/s for total sliding distance of 28800 m and at an interval of every sliding distance of 3600 m, wear properties and behavior were studied. The samples containing 10 wt.% silica (microparticles) with and without CNT always show increase in coefficient of friction at the expense of wear rate. However, samples containing only ci'rr have the lowest wear rate with the increase in coefficient of friction. Sliding distance studies also provide the information on wear rates which were ever changing at different sliding distances whereas average coefficient of friction did not vary throughout the tests. SEM observations of wear surfaces showed different wear morphologies when reinforcement (cNT or Si02) incorporated into the composites either alone or in combination.
    Matched MeSH terms: Friction
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links