Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Ghazali AK, Eng SA, Khoo JS, Teoh S, Hoh CC, Nathan S
    Microb Genom, 2021 02;7(2).
    PMID: 33565959 DOI: 10.1099/mgen.0.000527
    Burkholderia pseudomallei, a soil-dwelling Gram-negative bacterium, is the causative agent of the endemic tropical disease melioidosis. Clinical manifestations of B. pseudomallei infection range from acute or chronic localized infection in a single organ to fulminant septicaemia in multiple organs. The diverse clinical manifestations are attributed to various factors, including the genome plasticity across B. pseudomallei strains. We previously characterized B. pseudomallei strains isolated in Malaysia and noted different levels of virulence in model hosts. We hypothesized that the difference in virulence might be a result of variance at the genome level. In this study, we sequenced and assembled four Malaysian clinical B. pseudomallei isolates, UKMR15, UKMPMC2000, UKMD286 and UKMH10. Phylogenomic analysis showed that Malaysian subclades emerged from the Asian subclade, suggesting that the Malaysian strains originated from the Asian region. Interestingly, the low-virulence strain, UKMH10, was the most distantly related compared to the other Malaysian isolates. Genomic island (GI) prediction analysis identified a new island of 23 kb, GI9c, which is present in B. pseudomallei and Burkholderia mallei, but not Burkholderia thailandensis. Genes encoding known B. pseudomallei virulence factors were present across all four genomes, but comparative analysis of the total gene content across the Malaysian strains identified 104 genes that are absent in UKMH10. We propose that these genes may encode novel virulence factors, which may explain the reduced virulence of this strain. Further investigation on the identity and role of these 104 proteins may aid in understanding B. pseudomallei pathogenicity to guide the design of new therapeutics for treating melioidosis.
    Matched MeSH terms: Genome Size
  2. Mastor NN, Subbiah VK, Bakar WNWA, Begum K, Alam MJ, Hoque MZ
    Data Brief, 2020 Dec;33:106370.
    PMID: 33102652 DOI: 10.1016/j.dib.2020.106370
    Enterococcus gallinarum is a gram positive facultatively anaerobic bacteria that is typically found in mammalian intestinal tracts. It is generally not considered pathogenic to humans and is rarely reported. Here, we present the draft genome sequence data of Enterococcus gallinarum strain EGR748 isolated from a human clinical sample, and sequenced using the Illumina HiSeq 4000 system. The estimated whole genome size of the strain was 3,730,000 bp with a G + C content of 40.43%. The de novo assembly of the genome generated 55 contigs with an N50 of 208,509 bp. In addition, the Maximum Likelihood phylogenetic analysis based on the 16S rRNA sequence data accurately clustered EGR748 with other E. gallinarum strains. The data may be useful to demonstrate the capacity of this enterococcal species becoming the causal agents of nosocomial blood-stream infections. The genome dataset has been deposited at DDBJ/ENA/GenBank under the accession number JAABOR000000000.
    Matched MeSH terms: Genome Size
  3. Jani J, Mustapha ZA, Jamal NB, Stanis CS, Ling CK, Avoi R, et al.
    Data Brief, 2019 Oct;26:104445.
    PMID: 31534995 DOI: 10.1016/j.dib.2019.104445
    A Mycobacterium tuberculosis strain SBH162 was isolated from a 49-year-old male with pulmonary tuberculosis. GeneXpert MDR/RIF identified the strain as rifampicin-resistant M. tuberculosis. The whole genome sequencing was performed using Illumina HiSeq 4000 system to further investigate and verify the mutation sites of the strain through genetic analyses namely variant calling using bioinformatics tools. The de novo assembly of genome generated 100 contigs with N50 of 156,381bp. The whole genome size was 4,343,911 bp with G + C content of 65.58% and consisted of 4,306 predicted genes. The mutation site, S450L, for rifampicin resistance was detected in the rpoB gene. Based on the phylogenetic analysis using the Maximum Likelihood method, the strain was identified as belonging to the Europe America Africa lineage (Lineage 4). The genome dataset has been deposited at DDBJ/ENA/GenBank under the accession number SMOE00000000.
    Matched MeSH terms: Genome Size
  4. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al.
    Nature, 2021 Apr;592(7856):737-746.
    PMID: 33911273 DOI: 10.1038/s41586-021-03451-0
    High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
    Matched MeSH terms: Genome Size
  5. Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al.
    Gigascience, 2019 03 01;8(3).
    PMID: 30535374 DOI: 10.1093/gigascience/giy152
    BACKGROUND: The expanding world population is expected to double the worldwide demand for food by 2050. Eighty-eight percent of countries currently face a serious burden of malnutrition, especially in Africa and south and southeast Asia. About 95% of the food energy needs of humans are fulfilled by just 30 species, of which wheat, maize, and rice provide the majority of calories. Therefore, to diversify and stabilize the global food supply, enhance agricultural productivity, and tackle malnutrition, greater use of neglected or underutilized local plants (so-called orphan crops, but also including a few plants of special significance to agriculture, agroforestry, and nutrition) could be a partial solution.

    RESULTS: Here, we present draft genome information for five agriculturally, biologically, medicinally, and economically important underutilized plants native to Africa: Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and Moringa oleifera. Assembled genomes range in size from 217 to 654 Mb. In V. subterranea, L. purpureus, F. albida, S. birrea, and M. oleifera, we have predicted 31,707, 20,946, 28,979, 18,937, and 18,451 protein-coding genes, respectively. By further analyzing the expansion and contraction of selected gene families, we have characterized root nodule symbiosis genes, transcription factors, and starch biosynthesis-related genes in these genomes.

    CONCLUSIONS: These genome data will be useful to identify and characterize agronomically important genes and understand their modes of action, enabling genomics-based, evolutionary studies, and breeding strategies to design faster, more focused, and predictable crop improvement programs.

    Matched MeSH terms: Genome Size
  6. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25090400 DOI: 10.3109/19401736.2014.945553
    The complete mitochondrial genome of the swimming crab Thalamita crenata was obtained from a partial genome scan using the MiSeq sequencing system. The Thalamita crenata mitogenome has 15,787 base pairs (70% A+T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 897 bp non-coding AT-rich region. This Thalamita mitogenome sequence is the first for the genus and the eighth for the family Portunidae.
    Matched MeSH terms: Genome Size
  7. Tan MH, Gan HM, Lee YP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3983-3984.
    PMID: 25541305
    The mitochondrial genome sequence of the porcellanid crab, Petrolisthes haswelli is provided, making it the second for the family Porcellanidae and the third for the superfamily Galatheoidea. Petrolisthes haswelli has a mitogenome of 15,348 bp consisting of 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the P. haswelli mitogenome is 35.66% for T, 18.65% for C, 34.35% for A and 11.34% for G, with an AT bias of 70.01%. The mitogenome gene order is identical to the mitogenome of Neopetrolisthes maculatus, the only other species of the family with a sequenced mitogenome.
    Matched MeSH terms: Genome Size
  8. Gan HM, Gan HY, Tan MH, Penny SS, Willan RC, Austin CM
    PMID: 25648928 DOI: 10.3109/19401736.2015.1007355
    The complete mitochondrial genome of the commercially and ecologically important and internationally vulnerable giant clam Tridacna squamosa was recovered by genome skimming using the MiSeq platform. The T. squamosa mitogenome has 20,930 base pairs (62.35% A+T content) and is made up of 12 protein-coding genes, 2 ribosomal subunit genes, 24 transfer RNAs, and a 2594 bp non-coding AT-rich region. The mitogenome has a relatively large insertion in the atp6 gene. This is the first mitogenome to be sequenced from the genus Tridacna, and the family Tridacnidae and represents a new gene order.
    Matched MeSH terms: Genome Size
  9. Grandjean F, Tan MH, Gan HY, Gan HM, Austin CM
    PMID: 25738217 DOI: 10.3109/19401736.2015.1018207
    The Austropotamobius pallipes complete mitogenome has been recovered using Next-Gen sequencing. Our sample of A. pallipes has a mitogenome of 15,679 base pairs (68.44% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 877 bp non-coding AT-rich region. This is the first mitogenome sequenced for a crayfish from the family Astacidae and the 4(th) for northern hemisphere genera.
    Matched MeSH terms: Genome Size
  10. Austin CM, Tan MH, Gan HY, Gan HM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4176-4177.
    PMID: 25630729
    Next-Gen sequencing was used to recover the complete mitochondrial genome of Cherax tenuimanus. The mitogenome consists of 15,797 base pairs (68.14% A + T content) containing 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs, and a 779 bp non-coding AT-rich region. Mitogenomes have now been recovered for all six species of Cherax native to Western Australia.
    Matched MeSH terms: Genome Size
  11. Lee YP, Gan HM, Tan MH, Lys I, Page R, Dias Wanigasekera B, et al.
    PMID: 25707411 DOI: 10.3109/19401736.2015.1018209
    The mitogenome of Paranephrops planifrons, was obtained by next generation sequencing. This crayfish has a mitochondrial genome of 16,174 base pairs with 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs (tRNA), and a non-coding AT-rich region of 771 bp. The P. planifrons nucleotide composition is: 33.63% for T, 21.92% for C, 34.46% for A, and 9.98% for G and has a 68.09% AT bias. While the mitogenome gene order for this species is consistent with aspects of the highly distinctive parastacid crayfish mitogenome gene arrangement, it has a novel gene order involving the rearrangements of a protein coding and several tRNA genes.
    Matched MeSH terms: Genome Size
  12. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25103440 DOI: 10.3109/19401736.2014.945554
    The mitochondrial genome sequence of the Morton Bay bug, Thenus orientalis, is documented, which makes it the second mitogenome for species of the family Scyllaridae and the ninth for members of the superfamily Palinuroidae. Thenus orientalis has a mitogenome of 16,826 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 23 transfer RNAs, and a non-coding AT-rich region. The base composition of the T. orientalis mitogenome is 31.31% for T, 23.77% for C, 31.05% for A, and 13.87% for G, with an AT bias of 62.36%. In addition to a duplicated trnS1 and several other tRNA gene rearrangements, the mitogenome gene order has novel protein coding gene order with the nad6 and cob genes translocated as a block to a location downstream of the nad3 gene.
    Matched MeSH terms: Genome Size
  13. Tan MH, Gan HM, Lee YP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3981-3982.
    PMID: 25541307
    The mitochondrial genome sequence of the purple mottled shore crab, Cyclograpsus granulosus, is documented (GenBank accession number: LN624373), which makes it the third for genera of the superfamily Grapsoidea. Cyclograpsus granulosus has a mitogenome of 16,300 bp consisting of 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the C. granulosus mitogenome is 36.15% for T, 19.54% for C, 33.14% for A and 11.17% for G, with an AT bias of 69.29%. The mitogenome gene order is atypical for the brachyuran crabs, but is identical to species of the genus Eriocheir from the same family.
    Matched MeSH terms: Genome Size
  14. Gan HY, Gan HM, Lee YP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3985-3986.
    PMID: 25543913
    The complete mitochondrial genome of the Bass yabby Trypaea australiensis was obtained from a partial genome scan using the MiSeq sequencing system. The T. australiensis mitogenome is 16,821 bp in length (70.25% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a putative 1977 bp non-coding AT-rich region. This Trypaea mitogenome sequence is the 5th for the family Callianassidae and represents a new gene order for the Decapoda involving protein-coding, rRNA and tRNA genes and the control region.
    Matched MeSH terms: Genome Size
  15. Jørgensen TS, Nielsen BLH, Petersen B, Browne PD, Hansen BW, Hansen LH
    G3 (Bethesda), 2019 05 07;9(5):1295-1302.
    PMID: 30923136 DOI: 10.1534/g3.119.400085
    Copepoda is one of the most ecologically important animal groups on Earth, yet very few genetic resources are available for this Subclass. Here, we present the first whole genome sequence (WGS, acc. UYDY01) and the first mRNA transcriptome assembly (TSA, Acc. GHAJ01) for the tropical cyclopoid copepod species Apocyclops royi Until now, only the 18S small subunit of ribosomal RNA gene and the COI gene has been available from A. royi, and WGS resources was only available from one other cyclopoid copepod species. Overall, the provided resources are the 8th copepod species to have WGS resources available and the 19th copepod species with TSA information available. We analyze the length and GC content of the provided WGS scaffolds as well as the coverage and gene content of both the WGS and the TSA assembly. Finally, we place the resources within the copepod order Cyclopoida as a member of the Apocyclops genus. We estimate the total genome size of A. royi to 450 Mb, with 181 Mb assembled nonrepetitive sequence, 76 Mb assembled repeats and 193 Mb unassembled sequence. The TSA assembly consists of 29,737 genes and an additional 45,756 isoforms. In the WGS and TSA assemblies, >80% and >95% of core genes can be found, though many in fragmented versions. The provided resources will allow researchers to conduct physiological experiments on A. royi, and also increase the possibilities for copepod gene set analysis, as it adds substantially to the copepod datasets available.
    Matched MeSH terms: Genome Size
  16. Jørgensen TS, Petersen B, Petersen HCB, Browne PD, Prost S, Stillman JH, et al.
    Genome Biol Evol, 2019 May 01;11(5):1440-1450.
    PMID: 30918947 DOI: 10.1093/gbe/evz067
    Members of the crustacean subclass Copepoda are likely the most abundant metazoans worldwide. Pelagic marine species are critical in converting planktonic microalgae to animal biomass, supporting oceanic food webs. Despite their abundance and ecological importance, only six copepod genomes are publicly available, owing to a number of factors including large genome size, repetitiveness, GC-content, and small animal size. Here, we report the seventh representative copepod genome and the first genome and the first transcriptome from the calanoid copepod species Acartia tonsa Dana, which is among the most numerous mesozooplankton in boreal coastal and estuarine waters. The ecology, physiology, and behavior of A. tonsa have been studied extensively. The genetic resources contributed in this work will allow researchers to link experimental results to molecular mechanisms. From PCR-free whole genome sequence and mRNA Illumina data, we assemble the largest copepod genome to date. We estimate that A. tonsa has a total genome size of 2.5 Gb including repetitive elements we could not resolve. The nonrepetitive fraction of the genome assembly is estimated to be 566 Mb. Our DNA sequencing-based analyses suggest there is a 14-fold difference in genome size between the six members of Copepoda with available genomic information. This finding complements nucleus staining genome size estimations, where 100-fold difference has been reported within 70 species. We briefly analyze the repeat structure in the existing copepod whole genome sequence data sets. The information presented here confirms the evolution of genome size in Copepoda and expands the scope for evolutionary inferences in Copepoda by providing several levels of genetic information from a key planktonic crustacean species.
    Matched MeSH terms: Genome Size*
  17. Lam MQ, Vodovnik M, Zorec M, Chen SJ, Goh KM, Yahya A, et al.
    Int J Syst Evol Microbiol, 2020 Mar;70(3):1769-1776.
    PMID: 31976852 DOI: 10.1099/ijsem.0.003970
    To date, there is sparse information for the genus Robertkochia with Robertkochia marina CC-AMO-30DT as the only described member. We report here a new species isolated from mangrove soil collected at Malaysia Tanjung Piai National Park and perform polyphasic characterization to determine its taxonomic position. Strain CL23T is a Gram-negative, yellow-pigmented, strictly aerobic, catalase-positive and oxidase-positive bacterium. The optimal growth conditions were determined to be at pH 7.0, 30-37 °C and in 1-2 % (w/v) NaCl. The major respiratory quinone was menaquinone-6 (MK-6) and the highly abundant polar lipids were four unidentified lipids, a phosphatidylethanolamine and two unidentified aminolipids. The 16S rRNA gene similarity between strain CL23T and R. marina CC-AMO-30DT is 96.67 %. Strain CL23T and R. marina CC-AMO-30DT clustered together and were distinguished from taxa of closely related genera in 16S rRNA gene phylogenetic analysis. Genome sequencing revealed that strain CL23T has a genome size of 4.4 Mbp and a G+C content of 40.72 mol%. Overall genome related indexes including digital DNA-DNA hybridization value and average nucleotide identity are 17.70 % and approximately 70%, below the cutoffs of 70 and 95%, respectively, indicated that strain CL23T is a distinct species from R. marina CC-AMO-30DT. Collectively, based on the phenotypic, chemotaxonomic, phylogenetic and genomic evidences presented here, strain CL23T is proposed to represent a new species with the name Robertkochia solimangrovi sp. nov. (KCTC 72252T=LMG 31418T). An emended description of the genus Robertkochia is also proposed.
    Matched MeSH terms: Genome Size
  18. Loh KH, Shao KT, Chen HM, Chen CH, Loo PL, Hui AT, et al.
    PMID: 26016872 DOI: 10.3109/19401736.2015.1030629
    In this study, the complete mitogenome sequence of the longfang moray, Enchelynassa canina (Anguilliformes: Muraenidae) has been sequenced by the next-generation sequencing method. The length of the assembled mitogenome is 16,592 bp, which includes 13 protein coding genes, 22 transfer RNAs, and 2 ribosomal RNAs genes. The overall base composition of longfang moray is 28.4% for A, 28.0% for C, 18.4% for G, 25.1% for T, and show 82% identities to Kidako moray, Gymnothorax kidako. The complete mitogenome of the longfang moray provides an essential and important DNA molecular data for further phylogeography and evolutionary analysis for moray eel phylogeny.
    Matched MeSH terms: Genome Size
  19. Chan KG, Loke MF, Ong BL, Wong YL, Hong KW, Tan KH, et al.
    PeerJ, 2015;3:e1367.
    PMID: 26587340 DOI: 10.7717/peerj.1367
    Background. Two non-tuberculous mycobacterial strains, UM_3 and UM_11, were isolated from the trunk wash of captive elephants in Malaysia. As they appeared to be identical phenotypes, they were investigated further by conventional and whole genome sequence-based methods of strain differentiation. Methods. Multiphasic investigations on the isolates included species identification with hsp65 PCR-sequencing, conventional biochemical tests, rapid biochemical profiling using API strips and the Biolog Phenotype Microarray analysis, protein profiling with liquid chromatography-mass spectrometry, repetitive sequence-based PCR typing and whole genome sequencing followed by phylogenomic analyses. Results. The isolates were shown to be possibly novel slow-growing schotochromogens with highly similar biological and genotypic characteristics. Both strains have a genome size of 5.2 Mbp, G+C content of 68.8%, one rRNA operon and 52 tRNAs each. They qualified for classification into the same species with their average nucleotide identity of 99.98% and tetranucleotide correlation coefficient of 0.99999. At the subspecies level, both strains showed 98.8% band similarity in the Diversilab automated repetitive sequence-based PCR typing system, 96.2% similarity in protein profiles obtained by liquid chromatography mass spectrometry, and a genomic distance that is close to zero in the phylogenomic tree constructed with conserved orthologs. Detailed epidemiological tracking revealed that the elephants shared a common habitat eight years apart, thus, strengthening the possibility of a clonal relationship between the two strains.
    Matched MeSH terms: Genome Size
  20. Ng ZY, Fang BZ, Li WJ, Tan GYA
    Int J Syst Evol Microbiol, 2019 Oct;69(10):3031-3040.
    PMID: 31310190 DOI: 10.1099/ijsem.0.003587
    Three novel actinobacterial strains, designated as TPS16T, TPS81 and TPS83, were isolated from a sample of marine sediment collected from Tioman Island, Malaysia. The strains formed abundant branched substrate mycelia without fragmentation along with production of blue spores and blue diffusible pigment on soybean meal agar. The strains could grow at pH ranging from pH 6 to 12 and in 0-8 % (w/v) NaCl. Cell-wall hydrolysis showed the presence of meso-diaminopimelic acid. The strains were closely related to Marinactinospora thermotolerans SCSIO 00652T (97.60 %) and Marinactinospora endophytica YIM 690053T (96.87 %) based on phylogenetic analysis of 16S rRNA gene sequences. Multilocus sequence analysis including gyrB, recA and rpoB genes further confirmed that strain TPS16T represented a distinct branch within the family Nocardiopsaceae. The predominant menaquinones were MK-11(H2), MK-10(H2), MK-11(H4) and MK-10(H4), while the major fatty acids were found to be iso-C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and C18 : 1ω9c. Genome sequencing revealed genome sizes of approximately 6 Mb and G+C contents of 73.8 mol%. A new genus, Marinitenerispora gen. nov., is proposed within the family Nocardiopsaceae based on polyphasic data and the type species is Marinitenerispora sediminis gen. nov., sp. nov. The type strain is TPS16T (=DSM 46825T=TBRC 5138T).
    Matched MeSH terms: Genome Size
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links