Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Sidahmed HM, Hashim NM, Mohan S, Abdelwahab SI, Taha MM, Dehghan F, et al.
    Drug Des Devel Ther, 2016;10:297-313.
    PMID: 26834460 DOI: 10.2147/DDDT.S80625
    PURPOSE: β-Mangostin (BM) from Cratoxylum arborescens demonstrated various pharmacological activities such as anticancer and anti-inflammatory. In this study, we aimed to investigate its antiulcer activity against ethanol ulcer model in rats.

    MATERIALS AND METHODS: BM was isolated from C. arborescens. Gastric acid output, ulcer index, gross evaluation, mucus production, histological evaluation using hematoxylin and eosin and periodic acid-Schiff staining and immunohistochemical localization for heat shock protein 70 (HSP70) and Bax proteins were investigated. Possible involvement of reduced glutathione, lipid peroxidation, prostaglandin E2, antioxidant enzymes, superoxide dismutase and catalase enzymes, radical scavenging, nonprotein sulfhydryl compounds, and anti-Helicobacter pylori were investigated.

    RESULTS: BM showed antisecretory activity against the pylorus ligature model. The pretreatment with BM protect gastric mucosa from ethanol damaging effect as seen by the improved gross and histological appearance. BM significantly reduced the ulcer area formation, the submucosal edema, and the leukocytes infiltration compared to the ulcer control. The compound showed intense periodic acid-Schiff staining to the gastric mucus layer and marked amount of alcian blue binding to free gastric mucus. BM significantly increased the gastric homogenate content of prostaglandin E2 glutathione, superoxide dismutase, catalase, and nonprotein sulfhydryl compounds. The compound inhibited the lipid peroxidation revealed by the reduced gastric content of malondialdehyde. Moreover, BM upregulate HSP70 expression and downregulate Bax expression. Furthermore, the compound showed interesting anti-H. pylori activity.

    CONCLUSION: Thus, it could be concluded that BM possesses gastroprotective activity, which could be attributed to the antisecretory, mucus production, antioxidant, HSP70, antiapoptotic, and anti-H. pylori mechanisms.

    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics
  2. Ibrahim IA, Abdulla MA, Hajrezaie M, Bader A, Shahzad N, Al-Ghamdi SS, et al.
    Drug Des Devel Ther, 2016;10:93-105.
    PMID: 26766904 DOI: 10.2147/DDDT.S91247
    Monolluma quadrangula (Forssk.) Plowes is used in Saudi traditional medicines to treat gastric ulcers. The hydroalcoholic extract of M. quadrangula (MHAE) was used in an in vivo model to investigate its gastroprotective effects against ethanol-induced acute gastric lesions in rats. Five groups of Sprague Dawley rats were used. The first group was treated with 10% Tween 20 as a control. The other four groups included rats treated with absolute ethanol (5 mL/kg) to induce an ulcer, rats treated with 20 mg/kg omeprazole as a reference drug, and rats treated with 150 or 300 mg/kg MHAE. One hour later, the rats were administered absolute ethanol (5 mL/kg) orally. Animals fed with MHAE exhibited a significantly increased pH, gastric wall mucus, and flattening of the gastric mucosa, as well as a decreased area of gastric mucosal damage. Histology confirmed the results; extensive destruction of the gastric mucosa was observed in the ulcer control group, and the lesions penetrated deep into the gastric mucosa with leukocyte infiltration of the submucosal layer and edema. However, gastric protection was observed in the rats pre-fed with plant extracts. Periodic acid-Schiff staining of the gastric wall revealed a remarkably intensive uptake of magenta color in the experimental rats pretreated with MHAE compared to the ulcer control group. Immunohistochemistry staining revealed an upregulation of the Hsp70 protein and a downregulation of the Bax protein in rats pretreated with MHAE compared with the control rats. Gastric homogenate showed significantly increased catalase and superoxide dismutase, and the level of malondialdehyde (MDA) was reduced in the rats pretreated with MHAE compared to the control group. In conclusion, MHAE exhibited a gastroprotective effect against ethanol-induced gastric mucosal injury in rats. The mechanism of this gastroprotection included an increase in pH and gastric wall mucus, an increase in endogenous enzymes, and a decrease in the level of MDA. Furthermore, protection was given through the upregulation of Hsp70 and the downregulation of Bax proteins.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics
  3. Greenwood M, Greenwood MP, Paton JF, Murphy D
    PLoS One, 2015;10(4):e0124956.
    PMID: 25915053 DOI: 10.1371/journal.pone.0124956
    Arginine vasopressin (AVP) is synthesised in magnocellular neurons (MCNs) of supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. In response to the hyperosmotic stressors of dehydration (complete fluid deprivation, DH) or salt loading (drinking 2% salt solution, SL), AVP synthesis increases in MCNs, which over-burdens the protein folding machinery in the endoplasmic reticulum (ER). ER stress and the unfolded protein response (UPR) are signaling pathways that improve ER function in response to the accumulation of misfold/unfold protein. We asked whether an ER stress response was activated in the SON and PVN of DH and SL rats. We observed increased mRNA expression for the immunoglobulin heavy chain binding protein (BiP), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), and cAMP responsive element binding protein 3 like 1 (Creb3l1) in both SON and PVN of DH and SL rats. Although we found no changes in the splicing pattern of X box-binding protein 1 (Xbp1), an increase in the level of the unspliced form of Xbp1 (Xbp1U) was observed in DH and SL rats. CREB3L1, a novel ER stress inducer, has been shown to be activated by ER stress to regulate the expression of target genes. We have previously shown that CREB3L1 is a transcriptional regulator of the AVP gene; however, a role for CREB3L1 in the response to ER stress has yet to be investigated in MCNs. Here, we used lentiviral vectors to introduce a dominant negative form of CREB3L1 (CREB3L1DN) in the rat SON. Expression of CREB3L1DN in the SON decreased Chop and Xbp1U mRNA levels, but not BiP and Atf4 transcript expression. CREB3L1 is thus implicated as a transcriptional mediator of the ER stress response in the osmotically stimulated SON.
    Matched MeSH terms: Heat-Shock Proteins/genetics
  4. Nesaretnam K, Jin Lim E, Reimann K, Lai LC
    Toxicology, 2000 Oct 26;151(1-3):117-26.
    PMID: 11074306
    Breast cancer is the most common cancer in women worldwide. The growth of breast cancer cells is either hormone-dependent or hormone-independent. Both types are represented in vitro by the estrogen-receptor positive (ER+) MCF-7 and the estrogen-receptor negative (ER-) MDA-MB-231 cell lines, respectively. The pS2 gene is an estrogen-regulated gene and serves as a marker for the ER+ tumours. Carotenoids are pigments with anti-cancer properties besides having pro-vitamin A, antioxidant and free-radical quenching effects. This study was designed firstly, to compare the effect of palm oil carotene concentrate with retinoic acid on the growth of the ER+ MCF-7 and the ER- MDA-MB-231 cells; and secondly to evaluate the effect of the palm oil carotene concentrate on the regulation of pS2 mRNA. The growth experiments were performed with monolayer cells seeded in phenol red free RPMI 1640 culture media and subsequently treated with varying concentrations of either retinoic acid or palm oil carotenoids. The cell numbers were determined at the start of each experiment and then at successive time intervals. The results showed that the palm oil carotene concentrate caused dose-dependent inhibition of estradiol-stimulated growth of MCF-7 cells but did not affect the proliferation of MDA-MB-231 cells. Retinoic acid caused similar, albeit more potent effects, as significant inhibition was observed at lower concentrations than the palm oil carotenoids. In the pS2 gene expression experiment, cell monolayers were treated with the carotene concentrate (10(-6) M), either with or without supplemented estradiol (10(-8) M), and subsequently the RNA was extracted. Northern blotting was performed and the regulation of pS2 mRNA determined using a 32P-labelled pS2 cDNA probe. The results showed that the palm oil carotene concentrate did not affect the expression of pS2 mRNA and are therefore independent of the estrogen-regulated pathway.
    Matched MeSH terms: Heat-Shock Proteins/genetics
  5. Ong LC, Tan YF, Tan BS, Chung FF, Cheong SK, Leong CO
    Toxicol Appl Pharmacol, 2017 08 15;329:347-357.
    PMID: 28673683 DOI: 10.1016/j.taap.2017.06.024
    Single-walled carbon nanotubes (SWCNTs) are carbon-based nanomaterials that possess immense industrial potential. Despite accumulating evidence that exposure to SWCNTs might be toxic to humans, our understanding of the mechanisms for cellular toxicity of SWCNTs remain limited. Here, we demonstrated that acute exposure of short (1-3μm) and regular-length (5-30μm) pristine, carboxylated or hydroxylated SWCNTs inhibited cell proliferation in human somatic and human stem cells in a cell type-dependent manner. The toxicity of regular-length pristine SWCNT was most evidenced in NP69>CYT00086>MCF-10A>MRC-5>HaCaT > HEK-293T>HepG2. In contrast, the short pristine SWCNTs were relatively less toxic in most of the cells being tested, except for NP69 which is more sensitive to short pristine SWCNTs as compared to regular-length pristine SWCNTs. Interestingly, carboxylation and hydroxylation of regular-length SWCNTs, but not the short SWCNTs, significantly reduced the cytotoxicity. Exposure of SWCNTs also induced caspase 3 and 9 activities, mitochondrial membrane depolarization, and significant apoptosis and necrosis in MRC-5 embryonic lung fibroblasts. In contrast, SWCNTs inhibited the proliferation of HaCaT human keratinocytes without inducing cell death. Further analyses by gene expression profiling and Connectivity Map analysis showed that SWCNTs induced a gene expression signature characteristic of heat shock protein 90 (HSP90) inhibition in MRC-5 cells, suggesting that SWCNTs may inhibit the HSP90 signaling pathway. Indeed, exposure of MRC-5 cells to SWCNTs results in a dose-dependent decrease in HSP90 client proteins (AKT, CDK4 and BCL2) and a concomitant increase in HSP70 expression. In addition, SWCNTs also significantly inhibited HSP90-dependent protein refolding. Finally, we showed that ectopic expression of HSP90, but not HSP40 or HSP70, completely abrogated the cytotoxic effects of SWCNTs, suggesting that SWCNT-induced cellular toxicity is HSP90 dependent. In summary, our findings suggest that the toxic effects of SWCNTs are mediated through inhibition of HSP90 in human lung fibroblasts and keratinocytes.
    Matched MeSH terms: HSP90 Heat-Shock Proteins/genetics
  6. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics
  7. Tan KL, Chia WC, How CW, Tor YS, Show PL, Looi QHD, et al.
    Mol Biotechnol, 2021 Sep;63(9):780-791.
    PMID: 34061307 DOI: 10.1007/s12033-021-00339-2
    The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics
  8. Chen YB, Lan YW, Chen LG, Huang TT, Choo KB, Cheng WT, et al.
    Cell Stress Chaperones, 2015 Nov;20(6):979-89.
    PMID: 26243699 DOI: 10.1007/s12192-015-0627-7
    Chronic obstructive pulmonary disease (COPD) is a sustained blockage of the airways due to lung inflammation occurring with chronic bronchitis and/or emphysema. Progression of emphysema may be slowed by vascular endothelial growth factor A (VEGFA), which reduces apoptotic tissue depletion. Previously, authors of the present report demonstrated that cis-resveratrol (c-RSV)-induced heat-shock protein 70 (HSP70) promoter-regulated VEGFA expression promoted neovascularization of genetically modified mesenchymal stem cells (HSP-VEGFA-MSC) in a mouse model of ischemic disease. Here, this same stem cell line was evaluated for its protective capacity to alleviate elastase-induced pulmonary emphysema in mice. Results of this study showed that c-RSV-treatment of HSP-VEGFA-MSC exhibited synergy between HSP70 transcription activity and induced expression of anti-oxidant-related genes when challenged by cigarette smoke extracts. Eight weeks after jugular vein injection of HSP-VEGFA-MSC into mice with elastase-induced pulmonary emphysema followed by c-RSV treatment to induce transgene expression, significant improvement was observed in respiratory functions. Expression of VEGFA, endogenous nuclear factor erythroid 2-related factor (Nrf 2), and manganese superoxide dismutase (MnSOD) was significantly increased in the lung tissues of the c-RSV-treated mice. Histopathologic examination of treated mice revealed gradual but significant abatement of emphysema and restoration of airspace volume. In conclusion, the present investigation demonstrates that c-RSV-regulated VEGFA expression in HSP-VEGFA-MSC significantly improved the therapeutic effects on the treatment of COPD in the mouse, possibly avoiding side effects associated with constitutive VEGFA expression.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics*
  9. Merlot AM, Shafie NH, Yu Y, Richardson V, Jansson PJ, Sahni S, et al.
    Biochem Pharmacol, 2016 06 01;109:27-47.
    PMID: 27059255 DOI: 10.1016/j.bcp.2016.04.001
    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment.
    Matched MeSH terms: Heat-Shock Proteins/genetics; HSP40 Heat-Shock Proteins/genetics
  10. Sumera A, Radhakrishnan A, Baba AA, George E
    Blood Cells Mol. Dis., 2015 Apr;54(4):348-52.
    PMID: 25648458 DOI: 10.1016/j.bcmd.2015.01.008
    Thalassemia is known as a diverse single gene disorder, which is prevalent worldwide. The molecular chaperones are set of proteins that help in two important processes while protein synthesis and degradation include folding or unfolding and assembly or disassembly, thereby helping in cell homeostasis. This review recaps current knowledge regarding the role of molecular chaperones in thalassemia, with a focus on beta thalassemia.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics*
  11. Sung YY, Roberts RJ, Bossier P
    J Fish Dis, 2012 Aug;35(8):563-8.
    PMID: 22724455 DOI: 10.1111/j.1365-2761.2012.01397.x
    Exposure to TEX-OE®, a patented extract of the prickly pear cactus (Opuntia ficus indica) containing chaperone-stimulating factor, was shown to protect common carp, Cyprinus carpio L., fingerlings against acute ammonia stress. Survival was enhanced twofold from 50% to 95% after exposure to 5.92 mg L(-1) NH(3) , a level determined in the ammonia challenge bioassay as the 1-h LD50 concentration for this species. Survival of TEX-OE®-pre-exposed fish was enhanced by 20% over non-exposed controls during lethal ammonia challenge (14.21 mg L(-1)  NH(3) ). Increase in the levels of gill and muscle Hsp70 was evident in TEX-OE®-pre-exposed fish but not in the unexposed controls, indicating that application of TEX-OE® accelerated carp endogenous Hsp70 synthesis during ammonia perturbation. Protection against ammonia was correlated with Hsp70 accretion.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics*
  12. Hasheimi SR, Zulkifli I, Somchit MN, Zunita Z, Loh TC, Soleimani AF, et al.
    J Anim Physiol Anim Nutr (Berl), 2013 Aug;97(4):632-8.
    PMID: 22533311 DOI: 10.1111/j.1439-0396.2012.01302.x
    The present study was conducted to assess the effects of dietary supplementation of Zingiber officinale and Zingiber zerumbet and to heat-stressed broiler chickens on heat shock protein (HSP) 70 density, plasma corticosterone concentration (CORT), heterophil to lymphocyte ratio (HLR) and body temperature. Beginning from day 28, chicks were divided into five dietary groups: (i) basal diet (control), (ii) basal diet +1%Z. zerumbet powder (ZZ1%), (iii) basal diet +2%Z. zerumbet powder (ZZ2%), (iv) basal diet +1%Z. officinale powder (ZO1%) and (v) basal diet +2%Z. officinale powder (ZO2%). From day 35-42, heat stress was induced by exposing birds to 38±1°C and 80% RH for 2 h/day. Irrespective of diet, heat challenge elevated HSP70 expression, CORT and HLR on day 42. On day 42, following heat challenge, the ZZ1% birds showed lower body temperatures than those of control, ZO1% and ZO2%. Neither CORT nor HLR was significantly affected by diet. The ZO2% and ZZ2% diets enhanced HSP70 expression when compared to the control groups. We concluded that dietary supplementation of Z. officinale and Z. zerumbet powder may induce HSP70 reaction in broiler chickens exposed to heat stress.
    Matched MeSH terms: HSP72 Heat-Shock Proteins/genetics
  13. Soleimani AF, Zulkifli I, Omar AR, Raha AR
    Poult Sci, 2011 Jul;90(7):1427-34.
    PMID: 21673157 DOI: 10.3382/ps.2011-01403
    This study aimed to determine the effect of neonatal feed restriction on plasma corticosterone concentration (CORT), hippocampal glucocorticoid receptor (GR) expression, and heat shock protein (Hsp) 70 expression in aged male Japanese quail subjected to acute heat stress. Equal numbers of chicks were subjected to either ad libitum feeding (AL) or 60% feed restriction on d 4, 5, and 6 (FR). At 21 (young) and 270 (aged) d of age, birds were exposed to 43 ± 1°C for 1 h. Blood and hippocampus samples were collected to determine CORT and Hsp 70 and GR expressions before heat stress and following 1 h of heat stress, 1 h of post-heat stress recovery, and 2 h of post-heat stress recovery. With the use of real-time PCR and enzyme immunoassay, we examined the hippocampal expression of GR and Hsp 70 and CORT. The GR expression of the young birds increased following heat stress and remained consistent throughout the period of recovery. Conversely, no significant changes were noted on GR expression of aged birds. Although both young and aged birds had similar CORT before and during heat stress, the latter exhibited greater values following 1 and 2 h of recovery. Within the young group, feeding regimens had no significant effect on Hsp 70 expression. However, neonatal feed restriction improved Hsp 70 expression in aged birds. Neonatal feed restriction, compared with the AL group, resulted in higher CORT on d 21 but the converse was noted on d 270. Neonatal feed restriction appears to set a robust reactive hypothalamo-pituitary-adrenal response allowing the development of adaptive, healthy, and resilient phenotypes in aged quail as measured by a higher hippocampal Hsp 70 expression along with lower CORT.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics
  14. Soleimani AF, Zulkifli I, Hair-Bejo M, Omar AR, Raha AR
    Poult Sci, 2012 Feb;91(2):340-5.
    PMID: 22252346 DOI: 10.3382/ps.2011-01703
    Environmental stressors may influence chicken performance and susceptibility to pathogens, such as Salmonella enteritidis. This study was conducted to determine the effects of heat shock protein (Hsp)70 expression on resistance to Salmonella enteritidis infection in broiler chickens subjected to heat exposure. Chicks were divided into 3 feeding regimens: ad libitum feeding (control); 60% feed restriction on d 4, 5, and 6 (FR60); and 60% feed restriction on d 4, 5, and 6 plus 1,500 mg/kg of quercetin (FR60Q). On d 35, all of the chickens were individually inoculated with 1 mL of Salmonella enteritidis (1.5 × 10(8) cfu/bird) and exposed to an ambient temperature of 37 ± 1°C and 70% RH for 3 h/d. The FR60 and FR60Q chickens had significantly lower Salmonella enteritidis colonization and lower Hsp70 expression than that of the control chickens following the heat exposure period. The least colonization was observed in the FR60Q group (1.38 log(10) cfu/g in the spleen and 1.96 log(10) cfu/g in the cecal content) and the highest was in the control group (2.1 log(10) cfu/g in the spleen and 4.42 log(10) cfu/g in the cecal content). It appears that neonatal feed restriction can enhance resistance to Salmonella enteritidis colonization in heat-stressed broiler chicks, and the underlying mechanism could be associated with the lower expression of Hsp70.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics
  15. Jamar NH, Kritsiligkou P, Grant CM
    Sci Rep, 2018 03 01;8(1):3894.
    PMID: 29497115 DOI: 10.1038/s41598-018-22183-2
    Eukaryotic cells contain translation-associated mRNA surveillance pathways which prevent the production of potentially toxic proteins from aberrant mRNA translation events. We found that loss of mRNA surveillance pathways in mutants deficient in nonsense-mediated decay (NMD), no-go decay (NGD) and nonstop decay (NSD) results in increased protein aggregation. We have isolated and identified the proteins that aggregate and our bioinformatic analyses indicates that increased aggregation of aggregation-prone proteins is a general occurrence in mRNA surveillance mutants, rather than being attributable to specific pathways. The proteins that aggregate in mRNA surveillance mutants tend to be more highly expressed, more abundant and more stable proteins compared with the wider proteome. There is also a strong correlation with the proteins that aggregate in response to nascent protein misfolding and an enrichment for proteins that are substrates of ribosome-associated Hsp70 chaperones, consistent with susceptibility for aggregation primarily occurring during translation/folding. We also identified a significant overlap between the aggregated proteins in mRNA surveillance mutants and ageing yeast cells suggesting that translation-dependent protein aggregation may be a feature of the loss of proteostasis that occurs in aged cell populations.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics
  16. Zulkifli I, Akmal AF, Soleimani AF, Hossain MA, Awad EA
    Poult Sci, 2018 Apr 01;97(4):1306-1314.
    PMID: 29381776 DOI: 10.3382/ps/pex436
    A study with a 4 × 2 factorial arrangement was conducted to investigate the effects of 4 dietary protein levels and 2 environmental conditions on acute phase proteins (APP), brain heat shock protein (HSP) 70 density, and growth performance of broiler chickens. Day-old broiler chicks (Cobb 500) were fed isocaloric diets but with various levels of crude protein (CP), namely, (1) 21.0 and 19.0% CP in starter and finisher diets, respectively (control), (2) 19.5 and 17.5% CP in starter and finisher diets, respectively (Diet A), (3) 18.0 and 16.0% CP in starter and finisher diets, respectively (Diet B), and (4) 16.5 and 14.5% CP in starter and finisher diets, respectively (Diet C). Equal numbers of birds from each diet were subjected to either 23±1°C throughout or 33±1°C for 6 h per d from 22 to 35 d of age. From d 1 to 21, feed intake (FI) and weight gain (WG) decreased linearly (P = 0.021 and P = 0.009, respectively), as CP level was reduced. During the heat treatment period (d 22 to 35), there were significant (P = 0.04) diet × heat treatment interactions for FCR. Diet had no effect on FCR among the unheated birds, but the ratio increased linearly (P = 0.007) as dietary CP level decreased. Irrespective of ambient temperature, there was a significant linear decrease in FI (P = 0.032) and WG (P < 0.001) as dietary CP level decreased. Low-CP diets improved the survivability of heat-stressed broilers when compared to those fed control diets. Low-CP diets linearly decreased (P < 0.01) APP (ovotransferrin and alpha-acid glycoprotein) responses. Both APP and HSP 70 reactions were elevated following heat treatment. In conclusion, feeding broilers with low-CP diets adversely affect the growth performance of broilers under heat stress condition. However, low-CP diets were beneficial in improving the survivability. Because APP are involved in the restoration of homeostasis, the adverse effect of low-CP diet on the synthesis of these proteins could be of concern.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics*
  17. Zulkifli I, Najafi P, Nurfarahin AJ, Soleimani AF, Kumari S, Aryani AA, et al.
    Poult Sci, 2014 Dec;93(12):3112-8.
    PMID: 25306460 DOI: 10.3382/ps.2014-04099
    An experiment was conducted to determine the effect of corticosterone (CORT) administration on serum ovotransferrin (OVT), α1-acid glycoprotein (AGP), ceruloplasmin (CPN), and IL-6 concentrations, and brain heat shock protein (HSP) 70 expression in broiler chickens. From 14 to 20 d of age, equal numbers of birds were subjected to either (i) daily intramuscular injection with CORT in ethanol:saline (1:1, vol/vol) at 6 mg/kg of BW, or (ii) daily intramuscular injection with 0.5 mL ethanol:saline (1:1, vol/vol; control). Blood samples were collected before CORT treatment (14 d old), 3 and 7 d after CORT injections, and 4 d after cessation of CORT administration for determination of serum levels of CORT, OVT, AGP, CPN, and IL-6. Brain samples (whole cerebrum) were collected to measure HSP 70 density. Although CORT administration significantly increased feed intake, weight gain was significantly depressed. Administration of CORT also increased CORT, OVT, CPN, AGP, IL-6, and HSP 70 expression. Four days following cessation of CORT administration, OVT declined to the basal level but not CPN and AGP. In conclusion, an elevation in CORT can induce an acute-phase response and HSP 70 expression. Thus, APP and HSP 70 may be of value as indicators of stress in poultry.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics
  18. Loc NH, Macrae TH, Musa N, Bin Abdullah MD, Abdul Wahid ME, Sung YY
    PLoS One, 2013;8(9):e73199.
    PMID: 24039886 DOI: 10.1371/journal.pone.0073199
    Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70) and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO), peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics*
  19. Al-Aqil A, Zulkifli I
    Poult Sci, 2009 Jul;88(7):1358-64.
    PMID: 19531704 DOI: 10.3382/ps.2008-00554
    An experiment was conducted to determine the effects of 2 types of housing systems and early age feed restriction on heat shock protein (hsp) 70 expression and blood parameters in broiler chickens subjected to road transportation. On d 1, female chicks were housed either in windowless environmentally controlled chambers (temperature was set at 32 degrees C on d 1 and gradually reduced to 23 degrees C by d 21; CH) or in conventional open-sided houses (OH) with cyclic temperatures (minimum, 24 degrees C; maximum, 34 degrees C). Equal number of chicks from each housing system were subjected to either ad libitum feeding or 60% feed restriction on d 4, 5, and 6 (FR). On d 42, all of the birds were crated and transported for 6 h. Birds raised in OH had smaller increases in heterophil:lymphocyte ratios and plasma corticosterone concentrations than those of CH. Subjecting birds to FR dampened heterophil:lymphocyte ratios and corticosterone reactions to transportation. After 4 h of transportation, the OH birds had greater hsp 70 expression than their CH counterparts. Within the CH, the FR chicks showed higher hsp 70 density than those of the ad libitum-fed group. Except for glucose, housing system had a negligible effect on serum levels of cholesterol, potassium, and chloride. Collectively, the results suggest that the improved tolerance to transport stress in OH and FR chicks could be associated with better hsp 70 expression.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics
  20. Al-Aqil A, Zulkifli I, Hair Bejo M, Sazili AQ, Rajion MA, Somchit MN
    Poult Sci, 2013 Jan;92(1):33-40.
    PMID: 23243228 DOI: 10.3382/ps.2012-02446
    An experiment was conducted to determine the effects of combining both pleasant and unpleasant contacts with human beings on physiology and behavior of broiler chickens. Birds were subjected to the following treatments: (i) received no physical or visual contact with humans (control); (ii) from d 1 to 28, chicks were individually stroked gently for 30 s once daily (PL); (iii) from d 1 to 28, chicks were picked up individually, suspended by both legs, exposed to recorded noise, and swung gently for 15 s once daily (UNPL); (iv) from d 1 to 14 and from d 15 to 28, chicks were subjected to PL and UNPL, respectively (PL-UNPL); and (v) from d 1 to 14 and from d 15 to 28, chicks were subjected to UNPL and PL, respectively (UNPL-PL). On d 42, birds from each treatment group were road-transported for 3 h. Heat shock protein (hsp) 70 expression, plasma levels of corticosterone, serum creatine kinase concentration, heterophil/lymphocyte ratios (HLR), and tonic immobility duration were determined pre- and posttransit. There were significant (P < 0.05) duration of transportation × human contact treatment interactions for HLR and hsp 70 density. Following transit, the PL chicks had significantly (P < 0.05) lower HLR and greater hsp 70 density than the other groups. The corticosterone of PL and UNPL chicks were lower than their control, PL-UNPL, and UNPL-PL counterparts. The PL and PL-UNPL treatments were effective in shortening tonic immobility duration significantly (P < 0.05). Except for UNPL-PL, the serum creatine kinase activity of PL was significantly lower than the other groups. In conclusion, subjecting birds to pleasant human contact reduced stress and fear reactions to transportation by enhancing the ability to express hsp 70 in the brain. Unpleasant human contact had adverse effect on the birds' response to transportation. Early age pleasant experience with humans failed to negate the adverse effects of subsequent unpleasant contact.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links