Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Lu GL, Lee MT, Chiou LC
    Addict Biol, 2019 11;24(6):1153-1166.
    PMID: 30276922 DOI: 10.1111/adb.12672
    Orexins (also called hypocretins) are implicated in reward and addiction, but little is known about their role(s) in the association between hippocampal synaptic plasticity and drug preference. Previously, we found that exogenous orexin via OX1 and OX2 receptors can impair low frequency stimulation-induced depotentiation, i.e. restoring potentiation of excitatory synaptic transmission (re-potentiation) in mouse hippocampal slices. Here, we found this re-potentiation in hippocampal slices from mice that had acquired conditioned place preference (CPP) to cocaine. Both 10 and 20 mg/kg of cocaine induced similar magnitudes of CPP in mice and re-potentiation in their hippocampal slices, but differed in their susceptibility to TCS1102, a dual (OX1 and OX2 ) orexin receptor antagonist. TCS1102 significantly attenuated CPP and hippocampal re-potentiation induced by cocaine at 10 mg/kg but not at 20 mg/kg. Nonetheless, SCH23390, an antagonist of dopamine D1-like receptors (D1-likeRs), inhibited the effects induced by both doses of cocaine. SKF38393, a D1-likeR-selective agonist, also induced hippocampal re-potentiation in vitro. Interestingly, this effect was attenuated by TCS1102. Conversely, SCH23390 prevented orexin A-induced hippocampal re-potentiation. These results suggest that endogenous orexins are released in mice during cocaine-CPP acquisition, which sustains potentiated hippocampal transmission via OX1 /OX2 receptors and may contribute to the addiction memory of cocaine. This effect of endogenous orexins, however, may be substituted by dopamine that may dominate hippocampal re-potentiation and CPP via D1-likeRs when the reinforcing effect of cocaine is high.
    Matched MeSH terms: Hippocampus/metabolism
  2. Ahad MA, Chear NJ, Keat LG, Has ATC, Murugaiyah V, Hassan Z
    Ageing Res Rev, 2023 Aug;89:101990.
    PMID: 37343678 DOI: 10.1016/j.arr.2023.101990
    Research employing a bio-enhanced fraction of Clitoria ternatea (CT) to treat cognitive decline in the animal model has not yet been found. This study aimed to determine the neuroprotective effect of CT root bioactive fraction (CTRF) in chronic cerebral hypoperfusion (CCH) rat model. CTRF and its major compound, clitorienolactones A (CLA), were obtained using column chromatography. A validated HPLC-UV method was employed for the standardization of CTRF. CCH rats were given orally either vehicle or fraction (10, 20 and 40 mg/kg). Behavioural and hippocampal neuroplasticity studies were conducted following 4 weeks post-surgery. The brain hippocampus was extracted for proteins and neurotransmitters analyses. HPLC analysis showed that CTRF contained 25% (w/w) of CLA. All tested doses of CTRF and CLA (10 mg/kg) significantly restored cognitive deficits and reversed the inhibition of neuroplasticity by CCH. However, only CTRF (40 mg/kg) and CLA (10 mg/kg) significantly reversed the elevation of amyloid-beta plaque. Subsequently, treatment with CTRF (40 mg/kg) and CLA (10 mg/kg) alleviated the downregulation of molecular synaptic signalling proteins levels caused by CCH. The neurotransmitters level was restored following treatment of CTRF and CLA. Our finding suggested that CTRF improves memory and neuroplasticity in CCH rats which was mainly contributed by CLA.
    Matched MeSH terms: Hippocampus/metabolism
  3. Konuri A, Bhat KMR, Rai KS, Gourishetti K, Phaneendra M YS
    Anat Sci Int, 2021 Mar;96(2):197-211.
    PMID: 32944877 DOI: 10.1007/s12565-020-00574-8
    Cognitive impairment due to natural or surgical menopause is always associated with estrogen deficiency leading to reduced brain-derived neurotrophic factor (BDNF). Reduced BDNF levels in menopause affect neuronal maturation, survival, axonal and dendritic arborization and the maintenance of dendritic spine density. Conventional long-term estrogen replacement therapy reported causing the risk of venous thromboembolism and breast cancer. To overcome these undesirable effects, phytoestrogens have been used in menopause-induced condition without the risk of side effects. Therefore, the aim of the present study was to investigate the effect of dietary supplementation of fenugreek seed extract (FG) either alone or in combination with choline-DHA on BDNF and dendritic arborization of pyramidal neurons in CA1 and CA3 regions of the hippocampus in ovariectomized rats. Female Wistar rats of 9-10 months old were divided into six groups as normal control (NC); ovariectomy (OVX); OVX + FG; OVX + choline-DHA; OVX + FG + choline-DHA; and OVX + estradiol. All the groups, except NC, were ovariectomized. After 2 weeks of ovariectomy, dietary supplementation was initiated for a period of 30 days. After supplementation, behavioral studies, BDNF levels and dendritic arborization were estimated. Ovariectomized (OVX) rats showed reduced BDNF levels, dendritic branching points and dendritic intersections of pyramidal neurons in CA1 and CA3 regions of the hippocampus. OVX rats supplemented with FG with choline-DHA showed significantly improved BDNF levels, dendritic branching points and dendritic intersections. These results are demonstrating that FG with choline-DHA supplementation can be an alternative for estrogen replacement therapy to modulate menopause-induced learning and memory deficits.
    Matched MeSH terms: Hippocampus/metabolism
  4. Mitra NK, Siong HH, Nadarajah VD
    Ann Agric Environ Med, 2008;15(2):211-6.
    PMID: 19061257
    Dermal absorption of chlorpyrifos, an organophosphate insecticide is important because of its use in agriculture and control of household pests. The objectives of this study are to investigate firstly, the biochemical changes in the blood and secondly, histomorphometric changes in the hippocampus of adult mice following dermal application of chlorpyrifos in sub-toxic doses. Male Swiss albino mice (60 days) were segregated into one control and two treated groups (n=10). Chlorpyrifos, diluted with xylene, was applied in doses of 1/2 of LD(50) (E1) and 1/5 of LD(50) (E2) over the tail of mice of the two treated groups, 6 hours daily for 3 weeks. AChE levels in the serum and brain were estimated using a spectrophotometric method (Amplex Red reagent). Coronal serial sections were stained with 0.2 % thionin in acetate buffer and pyramidal neurons of Cornu Ammonis of hippocampus were counted at 400x magnification using Image Pro Express software. At the end of 3 weeks, body weights were reduced significantly in E1 group. Serum AChE concentrations were reduced by 97 % in E1 and 74 % in E2 groups compared to controls. The neurons of CA 3 and CA 1 in the hippocampus showed evidences of morphological damage in both treated groups. Furthermore, the neuronal count was significantly reduced in CA 3 layer of hippocampus in E1 group.
    Matched MeSH terms: Hippocampus/metabolism
  5. Ling KH, Hewitt CA, Tan KL, Cheah PS, Vidyadaran S, Lai MI, et al.
    BMC Genomics, 2014;15:624.
    PMID: 25052193 DOI: 10.1186/1471-2164-15-624
    The Ts1Cje mouse model of Down syndrome (DS) has partial triplication of mouse chromosome 16 (MMU16), which is partially homologous to human chromosome 21. These mice develop various neuropathological features identified in DS individuals. We analysed the effect of partial triplication of the MMU16 segment on global gene expression in the cerebral cortex, cerebellum and hippocampus of Ts1Cje mice at 4 time-points: postnatal day (P)1, P15, P30 and P84.
    Matched MeSH terms: Hippocampus/metabolism
  6. Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al.
    BMC Neurosci, 2012;13:109.
    PMID: 22989138 DOI: 10.1186/1471-2202-13-109
    This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague-Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR.
    Matched MeSH terms: Hippocampus/metabolism
  7. Damodaran T, Hassan Z, Navaratnam V, Muzaimi M, Ng G, Müller CP, et al.
    Behav Brain Res, 2014 Dec 15;275:252-8.
    PMID: 25239606 DOI: 10.1016/j.bbr.2014.09.014
    Cerebral ischemia is one of the leading causes of death and long-term disability in aging populations, due to the frequent occurrence of irreversible brain damage and subsequent loss of neuronal function which lead to cognitive impairment and some motor dysfunction. In the present study, the real time course of motor and cognitive functions were evaluated following the chronic cerebral ischemia induced by permanent, bilateral occlusion of the common carotid arteries (PBOCCA). Male Sprague Dawley rats (200-300g) were subjected to PBOCCA or sham-operated surgery and tested 1, 2, 3 and 4 weeks following the ischemic insult. The results showed that PBOCCA significantly reduced step-through latency in a passive avoidance task at all time points when compared to the sham-operated group. PBOCCA rats also showed significant increase in escape latencies during training in the Morris water maze, as well as a reduction of the percentage of times spend in target quadrant of the maze at all time points following the occlusion. Importantly, there were no significant changes in locomotor activity between PBOCCA and sham-operated groups. The BDNF expression in the hippocampus was 29.3±3.1% and 40.1±2.6% on day 14 and 28 post PBOCCA, respectively compared to sham-operated group. Present data suggest that the PBOCCA procedure effectively induces behavioral, cognitive symptoms associated with cerebral ischemia and, consequently, provides a valuable model to study ischemia and related neurodegenerative disorder such as Alzheimer's disease and vascular dementia.
    Matched MeSH terms: Hippocampus/metabolism
  8. Effendy MA, Yunusa S, Mat NH, Has ATC, Müller CP, Hassan Z
    Behav Brain Res, 2023 Feb 13;438:114169.
    PMID: 36273648 DOI: 10.1016/j.bbr.2022.114169
    Mitragynine, an indole alkaloid from the plant Mitragyna speciosa (Kratom), has been reported to modify hippocampal synaptic transmission. However, the role of glutamatergic neurotransmission modulating synaptic plasticity in mitragynine-induced synaptic changes is still unknown. Here, we determined the role of AMPA- and NMDA glutamate receptors in mitragynine-induced synaptic plasticity in the hippocampus. Male Sprague Dawley rats received either vehicle or mitragynine (10 mg/kg), with or without the AMPA receptor antagonist, NBQX (3 mg/kg), or the NMDA receptor antagonist, MK-801 (0.2 mg/kg). Field excitatory postsynaptic potentials (fEPSP) during baseline, paired-pulse facilitation (PPF) and long-term potentiation (LTP) were recorded in-vivo in the hippocampal CA1 area of anaesthetised rats. Basal synaptic transmission and LTP were significantly impaired after mitragynine, NBQX, and MK-801 alone, without an effect on PPF. Combined effects suggest a weak functional AMPA- as well as NMDA receptor antagonist action of mitragynine.
    Matched MeSH terms: Hippocampus/metabolism
  9. Zaydi AI, Lew LC, Hor YY, Jaafar MH, Chuah LO, Yap KP, et al.
    Benef Microbes, 2020 Dec 02;11(8):753-766.
    PMID: 33245015 DOI: 10.3920/BM2019.0200
    Aging processes affect the brain in many ways, ranging from cellular to functional levels which lead to cognitive decline and increased oxidative stress. The aim of this study was to investigate the potentials of Lactobacillus plantarum DR7 on brain health including cognitive and memory functions during aging and the impacts of high fat diet during a 12-week period. Male Sprague-Dawley rats were separated into six groups: (1) young animals on normal diet (ND, (2) young animals on a high fat diet (HFD), (3) aged animals on ND, (4) aged animals on HFD, (5) aged animals on HFD and L. plantarum DR7 (109 cfu/day) and (6) aged animals receiving HFD and lovastatin. To induce ageing, all rats in group 3 to 6 were injected sub-cutaneously at 600 mg/kg/day of D-galactose daily. The administration of DR7 has reduced anxiety accompanied by enhanced memory during behavioural assessments in aged-HFD rats (P<0.05). Hippocampal concentration of all three pro-inflammatory cytokines were increased during aging but reduced upon administration of both statin and DR7. Expressions of hippocampal neurotransmitters and apoptosis genes showed reduced expressions of indoleamine dioxygenase and P53 accompanied by increased expression of TPH1 in aged- HFD rats administered with DR7, indicating potential effects of DR7 along the pathways of serotonin and oxidative senescence. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging.
    Matched MeSH terms: Hippocampus/metabolism
  10. Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Makpol S, Damanhuri HA, et al.
    Biochem Biophys Res Commun, 2017 11 25;493(3):1356-1363.
    PMID: 28970069 DOI: 10.1016/j.bbrc.2017.09.164
    We have recently shown that age-dependent regional brain atrophy and lateral ventricle expansion may be linked with impaired cognitive and locomotor functions. However, metabolic profile transformation in different brain regions during aging is unknown. This study examined metabolic changes in the hippocampus, medial prefrontal cortex (mPFC) and striatum of middle- and late-aged Sprague-Dawley rats using ultrahigh performance liquid chromatography coupled with high-resolution accurate mass-orbitrap tandem mass spectrometry. Thirty-eight potential metabolites were altered in hippocampus, 29 in mPFC, and 14 in striatum. These alterations indicated that regional metabolic mechanisms in lated-aged rats are related to multiple pathways including glutathione, sphingolipid, tyrosine, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms in aging and provide insight for aging and health span.
    Matched MeSH terms: Hippocampus/metabolism*
  11. Wong JH, Muthuraju S, Reza F, Senik MH, Zhang J, Mohd Yusuf Yeo NAB, et al.
    Biomed Pharmacother, 2019 Feb;110:168-180.
    PMID: 30469081 DOI: 10.1016/j.biopha.2018.11.044
    Centella asiatica (CA) is a widely used traditional herb, notably for its cognitive enhancing effect and potential to increase synaptogenesis. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs) mediate fast excitatory neurotransmission with key roles in long-term potentiation which is believed to be the cellular mechanism of learning and memory. Improved learning and memory can be an indication to the surface expression level of these receptors. Our previous study demonstrated that administration of CA extract improved learning and memory and enhanced expression of AMPAR GluA1 subunit while exerting no significant effects on GABAA receptors of the hippocampus in rats. Hence, to further elucidate the effects of CA, this study investigated the effects of CA extract in recognition memory and spatial memory, and its effects on AMPAR GluA1 and GluA2 subunit and NMDAR GluN2 A and GluN2B subunit expression in the entorhinal cortex (EC) and hippocampal subfields CA1 and CA3. The animals were administered with saline, 100 mg/kg, 300 mg/kg, and 600 mg/kg of CA extract through oral gavage for 14 days, followed by behavioural analysis through Open Field Test (OFT), Novel Object Recognition Task (NORT), and Morris Water Maze (MWM) and lastly morphological and immunohistochemical analysis of the surface expression of AMPAR and NMDAR subunits were performed. The results showed that 14 days of administration of 600 mg/kg of CA extract significantly improved memory assessed through NORT while 300 mg/kg of CA extract significantly improved memory of the animals assessed through MWM. Immunohistochemical analysis revealed differential modulation effects on the expressions of receptor subunits across CA1, CA3 and EC. The CA extract at the highest dose (600 mg/kg) significantly enhanced the expression of AMPAR subunit GluA1 and GluA2 in CA1, CA3 and EC, and NMDAR subunit GluN2B in CA1 and CA3 compared to control. At 300 mg/kg, CA significantly increased expression of AMPAR GluA1 in CA1 and EC, and GluA2 in CA1, CA3 and EC while 100 mg/kg of CA significantly increased expression of only AMPAR subunit GluA2 in CA3 and EC. Expression of NMDAR subunit GluN2 A was significantly reduced in the CA3 (at 100, 300, and 600 mg/kg) while no significant changes of subunit expression was observed in CA1 and EC compared to control. The results suggest that the enhanced learning and memory observed in animals administered with CA was mainly mediated through increased expression of AMPAR GluA1 and GluA2 subunits and differential expression of NMDAR GluN2 A and GluN2B subunits in the hippocampal subfields and EC. With these findings, the study revealed a new aspect of cognitive enhancing effect of CA and its therapeutic potentials through modulating receptor subunit expression.
    Matched MeSH terms: Hippocampus/metabolism*
  12. Ismail N, Ismail M, Azmi NH, Bakar MFA, Yida Z, Abdullah MA, et al.
    Biomed Pharmacother, 2017 Nov;95:780-788.
    PMID: 28892789 DOI: 10.1016/j.biopha.2017.08.074
    Though the causes of Alzheimer's disease (AD) are yet to be understood, much evidence has suggested that excessive amyloid-β (Aβ) accumulation due to abnormal amyloid-β precursor protein (APP) processing and Aβ metabolism are crucial processes towards AD pathogenesis. Hence, approaches aiming at APP processing and Aβ metabolism are currently being actively pursued for the management of AD. Studies suggest that high cholesterol and a high fat diet have harmful effects on cognitive function and may instigate the commencement of AD pathogenesis. Despite the neuropharmacological attributes of black cumin seed (Nigella sativa) extracts and its main active compound, thymoquinone (TQ), limited records are available in relation to AD research. Nanoemulsion (NE) is exploited as drug delivery systems due to their capacity of solubilising non-polar active compounds and is widely examined for brain targeting. Herewith, the effects of thymoquinone-rich fraction nanoemulsion (TQRFNE), thymoquinone nanoemulsion (TQNE) and their counterparts' conventional emulsion in response to high fat/cholesterol diet (HFCD)-induced rats were investigated. Particularly, the Aβ generation; APP processing, β-secretase 1 (BACE1), γ-secretases of presenilin 1 (PSEN1) and presenilin 2 (PSEN2), Aβ degradation; insulin degrading enzyme (IDE), Aβ transportation; low density lipoprotein receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) were measured in brain tissues. TQRFNE reduced the brain Aβ fragment length 1-40 and 1-42 (Aβ40 and Aβ42) levels, which would attenuate the AD pathogenesis. This reduction could be due to the modulation of β- and γ-secretase enzyme activity, and the Aβ degradation and transportation in/out of the brain. The findings show the mechanistic actions of TQRFNE in response to high fat and high cholesterol diet associated to Aβ generation, degradation and transportation in the rat's brain tissue.
    Matched MeSH terms: Hippocampus/metabolism
  13. Binti Mohd Yusuf Yeo NA, Muthuraju S, Wong JH, Mohammed FR, Senik MH, Zhang J, et al.
    Brain Behav, 2018 09;8(9):e01093.
    PMID: 30105867 DOI: 10.1002/brb3.1093
    INTRODUCTION: Centella asiatica is an herbal plant that contains phytochemicals that are widely believed to have positive effects on cognitive function. The adolescent stage is a critical development period for the maturation of brain processes that encompass changes in physical and psychological systems. However, the effect of C. asiatica has not been extensively studied in adolescents. The aim of this study was therefore to investigate the effects of a C. asiatica extract on the enhancement of learning and memory in adolescent rats.

    METHODS: The locomotor activity, learning, and memory were assessed by using open field test and water T-maze test. This study also examined changes in neuronal cell morphology using cresyl violet and apoptosis staining. We also performed immunohistochemical study to analyse the expression of the glutamate AMPA receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) GluA1 subunit and the GABA receptor (γ-Aminobutyric Acid) subtype GABAA α1 subunit in the hippocampus of the same animals.

    RESULTS: We found no significant changes in locomotor activity (p > 0.05). The water T-maze data showed that 30 mg/kg dose significantly (p  0.05). Histological data revealed no neuronal morphological changes. Immunohistochemical analysis revealed increased expression of the AMPA GluA1 receptor subunit but there was no effect on GABAA receptor α1 subunit expression in the CA1 and CA2 subregions of the hippocampus.

    CONCLUSIONS: The C. asiatica extract therefore improved hippocampus-dependent spatial learning and memory in a dose-dependent manner in rats through the GluA1-containing AMPA receptor in the CA1 and CA2 sub regions of the hippocampus.

    Matched MeSH terms: Hippocampus/metabolism
  14. Shen J, Hao C, Yuan S, Chen W, Tong T, Chen Y, et al.
    Brain Res, 2024 Mar 01;1826:148715.
    PMID: 38142722 DOI: 10.1016/j.brainres.2023.148715
    BACKGROUND: The treatment of depression with acupuncture has been documented. The mechanism behind acupuncture's curative and preventative effects is still unknown.

    METHODS: The current study examined the effects of acupuncture on depression-like behaviors in a rat model of chronic unpredictable mild stress (CUMS), while also exploring its potential mechanisms. A total of six groups of rats were randomly assigned: control, CUMS, acupuncture, fluoxetine, acupoint catgut embedding and sham acupoint catgut embedding. Fluoxetine (2.1 mg/kg) and acupoint catgut embedding were used for comparative research to acupuncture. The modelling evaluation is measured by body weight and behavior tests. Western blotting and reverse transcription-polymerase chain reaction were used to detect the proteins and mRNA expression of Silent information regulator 1 (Sirt1)/ nuclear factor-erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1)/ Glutathione peroxidase 4 (GPX4) pathway in the hippocampus. The expression of oxidative stress (OS)-related proteins and inflammatory cytokines in the serum was detected with ELISA. Immunofluorescence showed microglia and astrocytes activity in the hippocampus.

    RESULTS: Acupuncture and fluoxetine could alleviate CUMS-induced depression-like behaviors. Acupuncture was also found to effectively reverse the levels of MDA, SOD, GSH, GSH-PX and T-AOC, IL-1β, IL-6 and TNF-α in the serum of CUMS-induced rats. Rats with CUMS showed decreased levels of Sirt1, Nrf2, HO-1 and GPX4 in the hippocampus, while acupuncture treatment could partly reverse the diminished effects. In addition, acupuncture treatment significantly reduced the activation of hippocampal microglia and astrocytes in CUMS-induced rats.

    CONCLUSION: The study's findings indicate that acupuncture has the potential to mitigate depression-like behaviors in rats induced with CUMS by mitigating OS and reducing neuroinflammation.

    Matched MeSH terms: Hippocampus/metabolism
  15. Tong T, Hao C, Shen J, Liu S, Yan S, Aslam MS, et al.
    Brain Res Bull, 2024 Jan;206:110838.
    PMID: 38123022 DOI: 10.1016/j.brainresbull.2023.110838
    BACKGROUND: Depression is associated with lowered mood, anxiety, anhedonia, cognitive impairments, and even suicidal tendencies in severe cases. Yet few studies have directed acupuncture's mechanism toward enhancing axonal repair correlated with synaptic plasticity and anti-inflammatory effects related to oxidative stress in the hippocampus.

    METHODS: Male Sprague-Dawley (SD) rats were randomly divided into control group (CON), chronic unpredictable mild stress (CUMS) group, CUMS + electroacupuncture group (EA), and CUMS + fluoxetine group (FLX) (n = 10/group). Rats were given a 28-day treatment at the Shangxing (GV23) and Fengfu (GV16) acupoints with electroacupuncture or fluoxetine (2.1 mg/kg).

    RESULTS: Rats exposed to CUMS induced depression-like behaviors and spatial learning-memory impairment, changed the ionized calcium binding adaptor molecule 1 (IBA-1), Vglut1, myelin basic protein (MBP), and postsynaptic density protein 95 (PSD95) level of hippocampal, increased the Nod-like receptor protein 3 (NLRP3), atypical squamous cell (ASC), Caspase level and hippocampal reactive oxygen species (ROS), and prompted the activation of Epha4-mediated signaling and an inflammatory response. Conversely, electroacupuncture administration reduced these changes and prevented depression-like behaviors and cognitive impairment. Electroacupuncture also promoted hippocampal expression of Sirtuin1(SIRT1), Nuclear factor erythroid 2-like (Nrf2), Heme oxygenase-1 (HO-1); reduced the expression of interleukin-1β (IL-1β), interleukin-18 (IL-18), and tumor necrosis factor-alpha (TNF-α); and prevented neural damage, particularly the synaptic myelin sheath, and neuroinflammation by regulating Eph receptor A4 (EphA4) in the hippocampal.

    CONCLUSION: These results indicate that electroacupuncture prevents depression-like behaviors with cognitive impairment and synaptic and neuronal damage, probably by reducing EphA4, which mediates ROS hyperfunction and the inflammatory response.

    Matched MeSH terms: Hippocampus/metabolism
  16. Ghanbari A, Zibara K, Salari S, Ghareghani M, Rad P, Mohamed W, et al.
    CNS Neurol Disord Drug Targets, 2018;17(7):528-538.
    PMID: 29968547 DOI: 10.2174/1871527317666180703111643
    BACKGROUND & OBJECTIVE: The adolescent brain has a higher vulnerability to alcoholinduced neurotoxicity, compared to adult's brain. Most studies have investigated the effect of ethanol consumption on the body, however, methanol consumption, which peaked in the last years, is still poorly explored.

    METHOD: In this study, we investigated the effects of methanol neurotoxicity on memory function and pathological outcomes in the hippocampus of adolescent rats and examined the efficacy of Light- Emitting Diode (LED) therapy. Methanol induced neurotoxic rats showed a significant decrease in the latency period, in comparison to controls, which was significantly improved in LED treated rats at 7, 14 and 28 days, indicating recovery of memory function. In addition, methanol neurotoxicity in hippocampus caused a significant increase in cell death (caspase3+ cells) and cell edema at 7 and 28 days, which were significantly decreased by LED therapy. Furthermore, the number of glial fibrillary acid protein astrocytes was significantly lower in methanol rats, compared to controls, whereas LED treatment caused their significant increase. Finally, methanol neurotoxicity caused a significant decrease in the number of brain-derived neurotrophic factor (BDNF+) cells, but also circulating serum BDNF, at 7 and 28 days, compared to controls, which were significantly increased by LED therapy. Importantly, LED significantly increased the number of Ki-67+ cells and BDNF levels in the serum and hypothalamus in control-LED rats, compared to controls without LED therapy.

    CONCLUSION: In conclusion, chronic methanol administration caused severe memory impairments and several pathological outcomes in the hippocampus of adolescent rats which were improved by LED therapy.

    Matched MeSH terms: Hippocampus/metabolism
  17. Khleifat KM, Al-Tawarah NM, Al-Kafaween MA, Al-Ksasbeh W, Qaralleh H, Alqaraleh M, et al.
    Curr Alzheimer Res, 2023;20(3):190-201.
    PMID: 37317907 DOI: 10.2174/1567205020666230614143027
    BACKGROUND/OBJECTIVE: Alzheimer's disease (AD) is mainly characterized by amnesia that affects millions of people worldwide. This study aims to explore the effectiveness capacities of bee venom (BV) for the enhancement of the memory process in a rat model with amnesia-like AD.

    METHODS: The study protocol contains two successive phases, nootropic and therapeutic, in which two BV doses (D1; 0.25 and D2: 0.5 mg/kg i.p.) were used. In the nootropic phase, treatment groups were compared statistically with a normal group. Meanwhile, in the therapeutic phase, BV was administered to scopolamine (1mg/kg) to induce amnesia-like AD in a rat model in which therapeutic groups were compared with a positive group (donepezil; 1mg/kg i.p.). Behavioral analysis was performed after each phase by Working Memory (WM) and Long-Term Memory (LTM) assessments using radial arm maze (RAM) and passive avoidance tests (PAT). Neurogenic factors; Brain-derived neurotrophic factor (BDNF), and Doublecortin (DCX) were measured in plasma using ELISA and Immunohistochemistry analysis of hippocampal tissues, respectively.

    RESULTS: During the nootropic phase, treatment groups demonstrated a significant (P < 0.05) reduction in RAM latency times, spatial WM errors, and spatial reference errors compared with the normal group. In addition, the PA test revealed a significant (P < 0.05) enhancement of LTM after 72 hours in both treatment groups; D1 and D2. In the therapeutic phase, treatment groups reflected a significant (P < 0.05) potent enhancement in the memory process compared with the positive group; less spatial WM errors, spatial reference errors, and latency time during the RAM test, and more latency time after 72 hours in the light room. Moreover, results presented a marked increase in the plasma level of BDNF, as well as increased hippocampal DCX-positive data in the sub-granular zone within the D1 and D2 groups compared with the negative group (P < 0.05) in a dose-dependent manner.

    CONCLUSION: This study revealed that injecting BV enhances and increases the performance of both WM and LTM. Conclusively, BV has a potential nootropic and therapeutic activity that enhances hippocampal growth and plasticity, which in turn improves WM and LTM. Given that this research was conducted using scopolamine-induced amnesia-like AD in rats, it suggests that BV has a potential therapeutic activity for the enhancement of memory in AD patients in a dose-dependent manner but further investigations are needed.

    Matched MeSH terms: Hippocampus/metabolism
  18. Chidambaram SB, Pandian A, Sekar S, Haridass S, Vijayan R, Thiyagarajan LK, et al.
    Environ Toxicol, 2016 Dec;31(12):1955-1963.
    PMID: 26434561 DOI: 10.1002/tox.22196
    PURPOSE: Present study was undertaken to evaluate the antiamnesic effect of Sesamum indicum (S. indicum) seeds (standardized for sesamin, a lignan, content) in scopolamine, a muscarinic antagonist intoxicated mice.

    METHODS: Male Swiss albino mice (18-22 g bw) were pretreated with methanolic extract of sesame seeds (MSSE) (100 and 200 mg/kg/day, p.o) for a period of 14 days. Scopolamine (0.3 mg/kg, i.p.) was injected on day 14, 45 ± 10 min after MSSE administration. Antiamnesic effect of MSSE was evaluated using step-down latency (SDL) on passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. To unravel the mechanism of action, we examined the effects of MSSE on the genes such as acetyl cholinesterase (AChE), muscarinic receptor M1 subtype (mAChRM1 ), and brain derived neurotrophic factor (BDNF) expression within hippocampus of experimental mice. Further, its effects on bax and bcl-2 were also evaluated. Histopathological examination of hippocampal CA1 region was performed using cresyl violet staining.

    RESULTS: MSSE treatment produced a significant and dose dependent increase in step down latency in passive avoidance test and decrease in transfer latency in elevated plus maze in scopolamine intoxicated injected mice. MSSE down-regulated AChE and mAChRM1 and up-regulated BDNF mRNA expression. Further, it significantly down-regulated the bax and caspase 3 and up-regulated bcl-2 expression in scopolamine intoxicated mice brains. Mice treated with MSSE showed increased neuronal counts in hippocampal CA1 region when compared with scopolamine-vehicle treated mice.

    CONCLUSION: Sesame seeds have the ability to interact with cholinergic components involved in memory function/restoration and also an interesting candidate to be considered for future cognitive research. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1955-1963, 2016.

    Matched MeSH terms: Hippocampus/metabolism
  19. Chellian R, Pandy V, Mohamed Z
    Eur J Pharmacol, 2018 Jan 05;818:10-16.
    PMID: 29042206 DOI: 10.1016/j.ejphar.2017.10.025
    In the present study, the effect α-asarone on nicotine withdrawal-induced depression-like behavior in mice was investigated. In this study, mice were exposed to drinking water or nicotine solution (10-200µg/ml) as a source of drinking for forty days. During this period, daily fluid consumption, food intake and body weight were recorded. The serum cotinine level was estimated before nicotine withdrawal. Naïve mice or nicotine-withdrawn mice were treated with α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) for eight consecutive days and the forced swim test (FST) or locomotor activity test was conducted. In addition, the effect of α-asarone or bupropion on the hippocampal pCREB, CREB and BDNF levels during nicotine-withdrawal were measured. Results indicated that α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment did not significantly alter the immobility time in the FST or spontaneous locomotor activity in naïve mice. However, the immobility time of nicotine-withdrawn mice was significantly attenuated with α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment in the FST. Besides, α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment significantly attenuated the hippocampal pCREB levels in nicotine-withdrawn mice. Overall, the present results indicate that α-asarone treatment attenuated the depression-like behavior through the modulation of hippocampal pCREB levels during nicotine-withdrawal in mice.
    Matched MeSH terms: Hippocampus/metabolism
  20. Zhiping H, Imam MU, Ismail M, Ismail N, Yida Z, Ideris A, et al.
    Food Funct, 2015 May;6(5):1701-11.
    PMID: 25920003 DOI: 10.1039/c5fo00226e
    The aim of this research is to investigate whether edible bird's nest (EBN) attenuates cortical and hippocampal neurodegeneration in ovariectomized rats. Ovariectomized rats were randomly divided into seven experimental groups (n = 6): the ovariectomy (OVX) group had their ovaries surgically removed; the sham group underwent surgical procedure similar to OVX group, but ovaries were left intact; estrogen group had OVX and received estrogen therapy (0.2 mg kg(-1) per day); EBN treatment groups received 6%, 3%, and 1.5% EBN, respectively. Control group was not ovariectomized. After 12 weeks of intervention, biochemical assays were performed for markers of neurodegeneration, and messenger ribonucleic acid (mRNA) levels of oxidative stress-related genes in the hippocampus and frontal cortex of the brain were analysed. Caspase 3 (cysteine-aspartic proteases 3) protein levels in the hippocampus and frontal cortex were also determined using western blotting. The results show that EBNs significantly decreased estrogen deficiency-associated serum elevation of advanced glycation end-products (AGEs), and they changed redox status as evidenced by oxidative damage (malondialdehyde content) and enzymatic antioxidant defense (superoxide dismutase and catalase) markers. Furthermore, genes associated with neurodegeneration and apoptosis were downregulated in the hippocampus and frontal cortex by EBN supplementation. Taken together, the results suggest that EBN has potential for neuroprotection against estrogen deficiency-associated senescence, at least in part via modification of the redox system and attenuation of AGEs.
    Matched MeSH terms: Hippocampus/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links