Displaying all 9 publications

Abstract:
Sort:
  1. Vk C, Ty L, Wf L, Ywy WS, An S, S Z, et al.
    Microbiol Res, 2018 Mar;207:108-115.
    PMID: 29458845 DOI: 10.1016/j.micres.2017.11.015
    Leptospirosis remains one of the most widespread zoonotic diseases caused by spirochetes of the genus Leptospira, which accounts for high morbidity and mortality globally. Leptospiral infections are often found in tropical and subtropical regions, with people exposed to contaminated environments or animal reservoirs are at high risk of getting the infection. Leptospirosis has a wide range of clinical manifestations with non-specific signs and symptoms and often misdiagnosed with other acute febrile illnesses at early stage of infection. Despite being one of the leading causes of zoonotic morbidity worldwide, there is still a gap between pathogenesis and human immune responses during leptospiral infection. It still remains obscure whether the severity of the infection is caused by the pathogenic properties of the Leptospira itself, or it is a consequence of imbalance host immune factors. Hence, in this review, we seek to summarize the past and present milestone findings on the biomarkers of host immune response aspects during human leptospiral infection, including cytokine and other immune mediators. A profound understanding of the interlink between virulence factors and host immune responses during human leptospirosis is imperative to identify potential biomarkers for diagnostic and prognostic applications as well as designing novel immunotherapeutic strategies in future.
    Matched MeSH terms: Host-Pathogen Interactions/immunology*
  2. Ravichandran G, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J
    Fish Shellfish Immunol, 2020 Nov;106:332-340.
    PMID: 32758637 DOI: 10.1016/j.fsi.2020.07.068
    The occurrences of multiple drug-resistant strains have been relentlessly increasing in recent years. The aquaculture industry has encountered major disease outbreaks and crucially affected by this situation. The usage of non-specific chemicals and antibiotics expedites the stimulation of resistant strains. Triggering the natural defense mechanism would provide an effective and safest way of protecting the host system. Hence, we have investigated the innate immune function of serine/threonine-protein kinase (STPK) in Macrobrachium rosenbergii (Mr). The in-silico protein analysis resulted in the identification of cationic antimicrobial peptide, MrSL-19, with interesting properties from STPK of M. rosenbergii. Antimicrobial assay, FACS and SEM analysis demonstrated that the peptide potentially inhibits Staphylococcus aureus by interacting with its membrane. The toxic study on MrSL-19 demonstrated that the peptide is not toxic against HEK293 cells as well as human erythrocytes. This investigation showed the significant innate immune property of an efficient cationic antimicrobial peptide, MrSL-19 of STPK from M. rosenbergii.
    Matched MeSH terms: Host-Pathogen Interactions/immunology*
  3. Lai JY, Lim TS
    Int J Biol Macromol, 2020 Nov 15;163:640-648.
    PMID: 32650013 DOI: 10.1016/j.ijbiomac.2020.06.268
    Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
    Matched MeSH terms: Host-Pathogen Interactions/immunology*
  4. Morozova OV, Panov VV, Bakhvalova VN
    Infect Genet Evol, 2020 Jun;80:104187.
    PMID: 31927073 DOI: 10.1016/j.meegid.2020.104187
    Two dominant species of wild small rodents trapped in Novosibirsk region, South-Western Siberia, Russia differed in their susceptibility to the tick-borne encephalitis virus (TBEV) infection. TBEV RNA average detection rate for Northern red-backed vole Myodes rutilus (Pallas, 1779) (82.2 ± 5.8% blood samples and 63.1 ± 2.7% organ samples) significantly exceeded the corresponding values for the striped field mouse Apodemus agrarius (Pallas, 1771) (47.0 ± 8.7% blood and 24.5 ± 2.8% organ samples) (p <0.001). Innate immunity may be one of possible reasons of the differences. Th1 cytokine gene expression distinguished between M. rutilus (12.5 ± 8.5%) and A. agrarius (66.6 ± 11.4%), whereas Th2 cytokine frequencies were statistically similar (81.8 ± 12.2% and 100.0%, respectively). Polarization indexes (PI) of the innate immunity calculated as ratio of Th2 to Th1 cytokine RNA detection rates for both M. rutilus (6.5) and A. agrarius (1.5) suggested Th2 mainly humoral immune response against persistent TBEV in natural mammalian hosts. Therefore, the TBEV-induced antibodies were analyzed by ELISA and hemagglutination inhibition (HI) tests. The TBEV-specific antibodies were detected in 74.8 ± 4.3% sera of M. rutilus and 67.3 ± 6.8% of A. agrarius. Among them HI antibodies were found in 4.8 ± 2.1% of the same analyzed sera of M. rutilus and in 6.0 ± 3.4% blood samples of A. agrarius only. To model the TBEV persistence both M. rutilus and A. agrarius were infected with the suspensions of the TBEV-infected ticks with further observations during 4 subsequent months. Detection rate of the TBEV RNA and antigen E remained high during the whole period, however, pathogenic for laboratory suckling mice virus was isolated up to 8 days postinfection. At late stages of the persistent infection (1-4 months) the TBEV RNA detection rate in northern red-backed voles remained high 70.6 ± 7.9% whereas in striped field mice significantly declined to 26.7 ± 9.2% (p  .05) but Th1 cytokine mRNA detection rates were different (44.4 ± 12.5% and 85.7 ± 9.7%, respectively) (p 
    Matched MeSH terms: Host-Pathogen Interactions/immunology
  5. Soe HJ, Manikam R, Raju CS, Khan MA, Sekaran SD
    PLoS One, 2020;15(8):e0237141.
    PMID: 32764789 DOI: 10.1371/journal.pone.0237141
    Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
    Matched MeSH terms: Host-Pathogen Interactions/immunology*
  6. Cheong HC, Yap PSX, Chong CW, Cheok YY, Lee CYQ, Tan GMY, et al.
    PLoS One, 2019;14(11):e0224658.
    PMID: 31738795 DOI: 10.1371/journal.pone.0224658
    The cervical microbiota constitutes an important protective barrier against the invasion of pathogenic microorganisms. A disruption of microbiota within the cervical milieu has been suggested to be a driving factor of sexually transmitted infections. These include Chlamydia trachomatis which frequently causes serious reproductive sequelae such as infertility in women. In this study, we profiled the cervical microbial composition of a population of 70 reproductive-age Malaysian women; among which 40 (57.1%) were diagnosed with genital C. trachomatis infection, and 30 (42.8%) without C. trachomatis infection. Our findings showed a distinct compositional difference between the cervical microbiota of C. trachomatis-infected subjects and subjects without C. trachomatis infection. Specifically, significant elevations of mostly strict and facultative anaerobes such as Streptococcus, Megasphaera, Prevotella, and Veillonella in the cervical microbiota of C. trachomatis-positive women were detected. The results from the current study highlights an interaction of C. trachomatis with the environmental microbiome in the endocervical region.
    Matched MeSH terms: Host-Pathogen Interactions/immunology
  7. Lee SH, Wong RR, Chin CY, Lim TY, Eng SA, Kong C, et al.
    Proc Natl Acad Sci U S A, 2013 Sep 10;110(37):15067-72.
    PMID: 23980181 DOI: 10.1073/pnas.1311725110
    Burkholderia pseudomallei is a Gram-negative soil bacterium that infects both humans and animals. Although cell culture studies have revealed significant insights into factors contributing to virulence and host defense, the interactions between this pathogen and its intact host remain to be elucidated. To gain insights into the host defense responses to B. pseudomallei infection within an intact host, we analyzed the genome-wide transcriptome of infected Caenorhabditis elegans and identified ∼6% of the nematode genes that were significantly altered over a 12-h course of infection. An unexpected feature of the transcriptional response to B. pseudomallei was a progressive increase in the proportion of down-regulated genes, of which ELT-2 transcriptional targets were significantly enriched. ELT-2 is an intestinal GATA transcription factor with a conserved role in immune responses. We demonstrate that B. pseudomallei down-regulation of ELT-2 targets is associated with degradation of ELT-2 protein by the host ubiquitin-proteasome system. Degradation of ELT-2 requires the B. pseudomallei type III secretion system. Together, our studies using an intact host provide evidence for pathogen-mediated host immune suppression through the destruction of a host transcription factor.
    Matched MeSH terms: Host-Pathogen Interactions/immunology
  8. Bruce JP, To KF, Lui VWY, Chung GTY, Chan YY, Tsang CM, et al.
    Nat Commun, 2021 07 07;12(1):4193.
    PMID: 34234122 DOI: 10.1038/s41467-021-24348-6
    Interplay between EBV infection and acquired genetic alterations during nasopharyngeal carcinoma (NPC) development remains vague. Here we report a comprehensive genomic analysis of 70 NPCs, combining whole-genome sequencing (WGS) of microdissected tumor cells with EBV oncogene expression to reveal multiple aspects of cellular-viral co-operation in tumorigenesis. Genomic aberrations along with EBV-encoded LMP1 expression underpin constitutive NF-κB activation in 90% of NPCs. A similar spectrum of somatic aberrations and viral gene expression undermine innate immunity in 79% of cases and adaptive immunity in 47% of cases; mechanisms by which NPC may evade immune surveillance despite its pro-inflammatory phenotype. Additionally, genomic changes impairing TGFBR2 promote oncogenesis and stabilize EBV infection in tumor cells. Fine-mapping of CDKN2A/CDKN2B deletion breakpoints reveals homozygous MTAP deletions in 32-34% of NPCs that confer marked sensitivity to MAT2A inhibition. Our work concludes that NPC is a homogeneously NF-κB-driven and immune-protected, yet potentially druggable, cancer.
    Matched MeSH terms: Host-Pathogen Interactions/immunology
  9. Osman AY, Saharee AA, Jesse FF, Kadir AA
    Microb Pathog, 2017 Sep;110:365-374.
    PMID: 28710016 DOI: 10.1016/j.micpath.2017.07.014
    In this study, we developed a mouse model and characterized the effects of intranasal inoculation of virulent Brucella melitensis strain 16M and its lipopolysaccharide (LPS). The effects of the exposure were compared with respective control groups. Both Brucella melitensis-infected and LPS-infected groups showed no significant clinical presentation with minor relevance in the mortality associated with the infection. In Brucella melitensis-infected group, significant histopathological changes in comparison to the LPS infected group with increase bacterial burden in the lungs, reproductive and reticuloendothelial organs were observed. However, both infected groups showed elevated levels of pro-inflammatory cytokine expression (IL-1β and IL6) and antibody production (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes was recorded in both infected groups throughout the experimental period. This is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in mouse model after intranasal inoculation with B. melitensis and its lipopolysaccharide. The study revealed a significant difference between infected and control groups with overlap in clinical, pathological, and immunological responses as well as sex related hormonal changes resulting from the infections.
    Matched MeSH terms: Host-Pathogen Interactions/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links