Displaying publications 1 - 20 of 355 in total

Abstract:
Sort:
  1. Pandiyan K, Tiwari R, Rana S, Arora A, Singh S, Saxena AK, et al.
    World J Microbiol Biotechnol, 2014 Jan;30(1):55-64.
    PMID: 23824667 DOI: 10.1007/s11274-013-1422-1
    The potential of Parthenium sp. as a feedstock for enzymatic saccharification was investigated by using chemical and biological pretreatment methods. Mainly chemical pretreatments (acid and alkali) were compared with biological pretreatment with lignolytic fungi Marasmiellus palmivorus PK-27. Structural and chemical changes as well as crystallinity of cellulose were examined through scanning electron microscopy, fourier transform infra red and X-ray diffraction analysis, respectively after pretreatment. Total reducing sugar released during enzymatic saccharification of pretreated substrates was also evaluated. Among the pretreatment methods, alkali (1% NaOH) treated substrate showed high recovery of acid perceptible polymerised lignin (7.53 ± 0.5 mg/g) and significantly higher amount of reducing sugar (513.1 ± 41.0 mg/gds) compared to uninoculated Parthenium (163.4 ± 21.2) after 48 h of hydrolysis. This is the first report of lignolytic enzyme production from M. palmivorus, prevalent in oil palm plantations in Malaysia and its application in biological delignification of Parthenium sp. Alkali (1% NaOH) treatment proves to be the suitable method of pretreatment for lignin recovery and enhanced yield of reducing sugar which may be used for bioethanol production from Parthenium sp.
    Matched MeSH terms: Hydrolysis
  2. Loo JL, Lai OM, Long K, Ghazali HM
    World J Microbiol Biotechnol, 2007 Dec;23(12):1771-8.
    PMID: 27517833 DOI: 10.1007/s11274-007-9427-2
    Mycelium-bound lipase (MBL) was prepared using a strain of Geotrichum candidum isolated from local soil. At the time of maximum lipase activity (54 h), the mycelia to which the lipase was bound were harvested by filtration and centrifugation. Dry MBL was prepared by lyophilizing the mycelia obtained. The yield of MBL was 3.66 g/l with a protein content of 44.11 mg/g. The lipase activity and specific lipase activity were 22.59 and 510 U/g protein, respectively. The moisture content of the MBL was 3.85%. The activity of free (extracellular) lipase in the culture supernatant (after removal of mycelia) was less than 0.2 U/ml. The MBL showed selectivity for oleic acid over palmitic acid during hydrolysis of palm olein, indicating that the lipase from G. candidum displayed high substrate selectivity for unsaturated fatty acid containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.
    Matched MeSH terms: Hydrolysis
  3. How SW, Sin JH, Wong SYY, Lim PB, Mohd Aris A, Ngoh GC, et al.
    Water Sci Technol, 2020 Jan;81(1):71-80.
    PMID: 32293590 DOI: 10.2166/wst.2020.077
    Many developing countries, mostly situated in the tropical region, have incorporated a biological nitrogen removal process into their wastewater treatment plants (WWTPs). Existing wastewater characteristic data suggested that the soluble chemical oxygen demand (COD) in tropical wastewater is not sufficient for denitrification. Warm wastewater temperature (30 °C) in the tropical region may accelerate the hydrolysis of particulate settleable solids (PSS) to provide slowly-biodegradable COD (sbCOD) for denitrification. This study aimed to characterize the different fractions of COD in several sources of low COD-to-nitrogen (COD/N) tropical wastewater. We characterized the wastewater samples from six WWTPs in Malaysia for 22 months. We determined the fractions of COD in the wastewater by nitrate uptake rate experiments. The PSS hydrolysis kinetic coefficients were determined at tropical temperature using an oxygen uptake rate experiment. The wastewater samples were low in readily-biodegradable COD (rbCOD), which made up 3-40% of total COD (TCOD). Most of the biodegradable organics were in the form of sbCOD (15-60% of TCOD), which was sufficient for complete denitrification. The PSS hydrolysis rate was two times higher than that at 20 °C. The high PSS hydrolysis rate may provide sufficient sbCOD to achieve effective biological nitrogen removal at WWTPs in the tropical region.
    Matched MeSH terms: Hydrolysis
  4. Hafid HS, Nor 'Aini AR, Mokhtar MN, Talib AT, Baharuddin AS, Umi Kalsom MS
    Waste Manag, 2017 Sep;67:95-105.
    PMID: 28527863 DOI: 10.1016/j.wasman.2017.05.017
    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H2SO4) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production.
    Matched MeSH terms: Hydrolysis
  5. Cheong CW, Lee YS, Ahmad SA, Ooi PT, Phang LY
    Waste Manag, 2018 Sep;79:658-666.
    PMID: 30343798 DOI: 10.1016/j.wasman.2018.08.029
    A huge amount of feathers is generated as a waste every year. Feathers can be a protein source if it is treated with an appropriate method. The present study investigates feasibility of autoclave alkaline and microwave alkaline pretreatments to be combined with enzymatic treatment for feather solubilization and protein production. Hydrolysis of chicken feather by autoclave alkaline pretreatment followed by an enzymatic method (AAS) or microwave alkaline pretreatment followed by an enzymatic method (MAS) was optimized by response surface methodology. Various NaOH concentrations for autoclave alkaline pretreatment (0.01-0.1 M) and microwave-alkaline pretreatment (0.01-0.05 M) were applied. The holding time for both pretreatments ranged from 1 to 10 min. The pretreated feathers were subjected to enzymatic hydrolysis using a commercial enzyme prior to analysis of protein content, feather solubilization, functional groups, and elemental composition (carbon, hydrogen, nitrogen and sulfur) of the treated feathers. The results revealed that both autoclave alkaline pretreatment and microwave alkaline pretreatment under optimized conditions of 0.068 M NaOH, 2 min holding time, 105 °C and 450 W, 0.05 M NaOH for 10 min, respectively, enhanced the subsequent Savinase hydrolysis of chicken feathers to achieve more than 80% degradation and more than 70% protein recovery. Fourier transform infrared spectroscopy results showed that both thermal-alkaline pretreatments weakened the structure of the feather. Reduction of carbon, nitrogen, and sulfur occurred in both thermal-alkaline pretreatments of feathers indicating degradation of the feather as well as protein release. Thermal-alkaline pretreatment may be a promising method for enhancing the enzymatic hydrolysis of chicken feathers and for producing a protein-rich hydrolysate.
    Matched MeSH terms: Hydrolysis
  6. Thangavelu SK, Rajkumar T, Pandi DK, Ahmed AS, Ani FN
    Waste Manag, 2019 Mar 01;86:80-86.
    PMID: 30902242 DOI: 10.1016/j.wasman.2019.01.035
    Microwave assisted acid hydrolysis (H2SO4 and HCl with >0.5 mol/L) to produce bioethanol from sago pith waste (SPW) was studied. The energy consumption for microwave hydrolysis at different energy inputs and acid concentration were calculated. The overall energy consumption for bioethanol fuel production from SPW was assessed. A maximum of 88% glucose yield and 80% ethanol yield (3.1 g ethanol per 10 g SPW) were obtained using 1.0 mol/L H2SO4. Microwave hydrolysis using 1.0 mol/L H2SO4 consumed the minimum energy of 8.1 kJ to produce 1 g glucose from SPW when energy input was fixed at 54 kJ (900 W for 1 min). In general, 1 g glucose can produce 16 kJ. The overall energy consumption for fuel grade bioethanol production from SPW was 31.77 kJ per g ethanol, which was slightly higher than the lower heating values of ethanol (26.74 kJ/g ethanol).
    Matched MeSH terms: Hydrolysis
  7. Ong VZ, Wu TY, Lee CBTL, Cheong NWR, Shak KPY
    Ultrason Sonochem, 2019 Nov;58:104598.
    PMID: 31450331 DOI: 10.1016/j.ultsonch.2019.05.015
    This study demonstrated the effect of two-pot sequential pretreatment, comprising of ultrasound assisted deep eutectic solvent (DES) with the aim to investigate the effects of ultrasound amplitude and duration in enhancing delignification. Oil palm fronds (OPF) were ultrasonicated in a water medium, followed by a pretreatment using DES (choline chloride:urea). Fourier transform infra-red spectroscopy, X-ray diffraction, field emission scanning electron microscope, Brunauer-Emmet-Teller and solubilised lignin concentration were conducted to confirm the effectiveness of ultrasound assisted DES on the pretreatment of OPF. The recommended ultrasound conditions were determined to be 70% amplitude and duration of 30 min, where the sequential DES pretreatment was able to reduce lignin content of OPF to 14.01%, while improving xylose recovery by 58%.
    Matched MeSH terms: Hydrolysis
  8. Yan Sim X, He N, Mohamed Abdul P, Keong Yeap S, Woh Hui Y, Foong Tiang M, et al.
    Ultrason Sonochem, 2024 Mar;104:106811.
    PMID: 38394823 DOI: 10.1016/j.ultsonch.2024.106811
    Durian peel, an abundant waste in Malaysia could be a potential substrate for fermentable sugar recovery for value-added biochemical production. Common pretreatment such as acid or alkaline pretreatment resulted in the need for extensive solid washing which generated wastewater. Herein, this study aims to introduce sonication on top of chemical pretreatment to destruct lignin and reduce the chemical usage during the durian peel pretreatment process. In this study, the morphology and the chemical composition of the pretreated durian peels were studied. The sugar yield produced from the chemical pretreatment and the combined ultrasound and chemical pretreatment were compared. The morphology and chemical structure of durian peels were investigated by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) analysis and X-ray diffraction (XRD). The SEM images showed that the structural change became more significant when sonication was introduced. Second, XRD profile indicated a relatively higher crystallinity index and FTIR spectra displayed a lower intensity of lignin and hemicellulose for ultrasound plus alkaline (UB) pretreatment as compared to acid, alkaline and ultrasound plus acid (UA) pretreatment. UB and UA pretreatment portrayed higher yield (376.60 ± 12.14 and 237.38 ± 3.96 mg reducing sugar/g dry biomass, respectively) than their controls without the application of ultrasound. Therefore, it could be concluded that ultrasound was able to intensify the fermentable sugar recovery from durian peel by inducing physical and chemical effect of cavitation to alter the morphology of durian peel. Fermentation of UB treated durian peel resulted in 2.68 mol hydrogen/mol consumed sugar and 131.56 mL/Lmedium/h of hydrogen productivity. This study is important because it will shed light on a way to handle durian waste disposal problems and generate fermentable sugars for the production of high value-added products.
    Matched MeSH terms: Hydrolysis
  9. YAP JAA YEE, AMIZA MAT AMIN
    MyJurnal
    This study aimed to determine the physicochemical properties of undulated surf clam (Paphia undulata) hydrolysate as affected by the degree of hydrolysis (DH). Three levels of DH of undulated surf clam hydrolysate were prepared which were DH 36.57% (without any enzymatic hydrolysis), DH 58.25% (0.5% Alcalase®; 5 min; pH 7.5; 60ºC) and DH 91.26% (1% Alcalase®; 30 min; pH 7.5; 60ºC). After protein hydrolysis, the undulated surf clam hydrolysates were centrifuged, and their supernatants were freeze-dried. This study found that the protein hydrolysate with lower DH (DH 36.57%) gave lower protein content and higher ash and fat contents compared to other samples (DH 58.25% and DH 91.26%). However, the carbohydrate content is similar in all samples (16.56-20.04%). This study also found that foaming properties (29.43-67.50%), emulsifying capacity (11.94-110.52%) and peptide solubility (57.61-94.08%) were affected by the DH. As DH increased, the emulsifying capacity decreased, while peptide solubility increased. While the foaming capacity increased with increasing DH until it reached a maximum value and level off afterwards. For colour parameters, although there were differences between L*, a* and b* values for all three samples, a fluctuating pattern was noted with DH. DH also did not affect the water-holding and oil-holding capacity of undulated surf clam hydrolysate. This study shows that certain physicochemical properties of undulated surf clam hydrolysate can be tailored by adjusting the degree of hydrolysis.
    Matched MeSH terms: Hydrolysis
  10. Naresh S, Kunasundari B, Gunny AAN, Teoh YP, Shuit SH, Ng QH, et al.
    Trop Life Sci Res, 2019 Jan;30(1):123-147.
    PMID: 30847037 MyJurnal DOI: 10.21315/tlsr2019.30.1.8
    This study reports the biodiversity of thermophilic cellulolytic bacterial strains that present in the north Malaysian mangrove ecosystem. Soil samples were collected at the four most northern state of Malaysia (Perak, Pulau Pinang, Kedah and Perlis). The samples obtained were first enriched in nutrient broth at 45°C and 55°C prior culturing in the carboxymethylcellulose (CMC) agar medium. Repeated streaking was performed on the CMC agar to obtain a pure culture of each isolate prior subjecting it to hydrolysis capacity testing. The isolates that showing the cellulolytic zone (halozone) were sent for 16S rRNA sequencing. Total seven isolates (two from Perak, three from Kedah, another two were from Perlis and Penang each) showed halozone. The isolate (KFX-40) from Kedah exhibited highest halozone of 3.42 ± 0.58, meanwhile, the one obtained from Perak (AFZ-0) showed the lowest hydrolysis capacity (2.61 ± 0.10). Based on 16S rRNA sequencing results, 5 isolates (AFY-40, AFZ-0, KFX-40, RFY-20, and PFX-40) were determined to be Anoxybacillus sp. The other two isolates were identified as Bacillus subtilis (KFY-40) and Paenibacillus dendritiformis (KFX-0). Based on growth curve, doubling time of Anoxybacillus sp. UniMAP-KB06 was calculated to be 32.3 min. Optimal cellulose hydrolysis temperature and pH of this strain were determined to be 55°C and 6.0 respectively. Addition of Mg2+ and Ca2+ were found to enhance the cellulase activity while Fe3+ acted as an enzyme inhibitor.
    Matched MeSH terms: Hydrolysis
  11. Tan NH, Ponnudurai G, Chung MC
    Toxicon, 1997 Jun;35(6):979-84.
    PMID: 9241791
    The proteolytic specificity of rhodostoxin, the major hemorrhagin from Calloselasma rhodostoma (Malayan pit viper) venom was investigated using oxidized B-chain of bovine insulin as substrate. Six peptide bonds were cleaved: Ser9-Hist10, His10-Leu11, Ala14-Leu15, Tyr16-Leu17, Gly20-Glu21 and Phe24-Phe25. Deglycosylated rhodostoxin, however, cleaved primarily at Arg22-Gly23.
    Matched MeSH terms: Hydrolysis
  12. Kadir NH, David R, Rossiter JT, Gooderham NJ
    Toxicology, 2015 Aug 6;334:59-71.
    PMID: 26066520 DOI: 10.1016/j.tox.2015.06.002
    Cruciferous vegetable consumption correlates with reduced risk of cancer. This chemopreventative activity may involve glucosinolates and their hydrolysis products. Glucosinolate-derived isothiocyanates have been studied for their toxicity and chemopreventative properties, but other hydrolysis products (epithionitriles and nitriles) have not been thoroughly examined. We report that these hydrolysis products differ in their cytotoxicity to human cells, with toxicity most strongly associated with isothiocyanates rather than epithionitriles and nitriles. We explored mechanisms of this differential cytotoxicity by examining the role of oxidative metabolism, oxidative stress, mitochondrial permeability, reduced glutathione levels, cell cycle arrest and apoptosis. 2-Propenylisothiocyanate and 3-butenylisothiocyanate both inhibited cytochome P450 1A (CYP1A) enzyme activity in CYP expressing MCL-5 cells at high cytotoxic doses. Incubation of MCL-5 cells with non-cytotoxic doses of 2-propenylisothiocyanate for 24h resulted in a dose-dependent inhibition of ethoxyresorufin O-deethylase, yet failed to affect CYP1A1 mRNA expression indicating interference with enzyme activity rather than inhibition of transcription. Increased reactive oxygen species (ROS) production was observed only for 2-propenylisothiocyanate treatment. 2-Propenylisothiocyanate treatment lowered reduced glutathione levels whereas no changes were noted with 3,4-epithiobutylnitrile. Cell cycle analysis showed that 2-propenylisothiocyanate induced a G2/M block whereas other hydrolysis products showed only marginal effects. We found that 2-propenylisothiocyanate and 3-butenylisothiocyanate induced cell death predominantly via necrosis whereas, 3,4-epithiobutylnitrile promoted both necrosis and apoptosis. Thus the activity of glucosinolate hydrolysis products includes cytotoxicity that is compound-class specific and may contribute to their putative chemoprotection properties.
    Matched MeSH terms: Hydrolysis
  13. Cheong MY, Ariffin A, Khan MN
    J Phys Chem B, 2007 Oct 25;111(42):12185-94.
    PMID: 17914797
    Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of N-benzylphthalimide (1) show a nonlinear decrease with the increase in [C(m)E(n)]T (total concentration of Brij 58, m = 16, n = 20 and Brij 56, m = 16, n = 10) at constant [CH(3)CN] and [NaOH]. These nonionic micellar effects, within the certain typical reaction conditions, have been explained in terms of the pseudophase micellar (PM) model. The values of micellar binding constants (KS) of 1 are 1.04 x 10(3) M(-1) (at 1.0 x 10(-3) M NaOH) and 1.08 x 10(3) M(-1) (at 2.0 x 10(-3) M NaOH) for C(16)E(20) as well as 600 M(-1) (at 7.6 x 10(-4) M NaOH) and 670 M(-1) (at 1.0 x 10(-3) M NaOH) for C(16)E(10) micelles. The pseudo-first-order rate constants (kM) for hydrolysis of 1 in C(16)E(20) micellar pseudophase are approximately 90-fold smaller than those (kW) in water phase. The values of kM for hydrolysis of 1 in C(16)E(10) micelles are almost zero. Kinetic coupled with UV spectral data reveals significant irreversible nonionic micellar binding of 1 molecules in the micellar environment of nearly zero hydroxide ion concentration at >or=0.14 M C(16)E(20) and 1.0 x 10(-3) M NaOH while such observations could not be detected at or=3 x 10(-3) M C(16)E(10) and 7.6 x 10(-4) M NaOH, while the rate of hydrolysis of 1 is completely ceased at >or=0.05 M C(16)E(10) and 7.6 x 10(-4) M NaOH. The rate of hydrolysis of 1 at 5.0 x 10(-2) and 8.8 x 10(-2) M C(16)E(10) and 1.0 x 10(-3) M NaOH reveals the formation of presumably phthalic anhydride, whereas such observation was not observed in the C(16)E(20) micellar system under similar experimental conditions.
    Matched MeSH terms: Hydrolysis
  14. Tan K, Heo S, Foo M, Chew IM, Yoo C
    Sci Total Environ, 2019 Feb 10;650(Pt 1):1309-1326.
    PMID: 30308818 DOI: 10.1016/j.scitotenv.2018.08.402
    Nanocellulose, a structural polysaccharide that has caught tremendous interests nowadays due to its renewability, inherent biocompatibility and biodegradability, abundance in resource, and environmental friendly nature. They are promising green nanomaterials derived from cellulosic biomass that can be disintegrated into cellulose nanofibrils (CNF) or cellulose nanocrystals (CNC), relying on their sensitivity to hydrolysis at the axial spacing of disordered domains. Owing to their unique mesoscopic characteristics at nanoscale, nanocellulose has been widely researched and incorporated as a reinforcement material in composite materials. The world has been consuming the natural resources at a much higher speed than the environment could regenerate. Today, as an uprising candidate in soft condensed matter physics, a growing interest was received owing to its unique self-assembly behaviour and quantum size effect in the formation of three-dimensional nanostructured material, could be utilised to address an increasing concern over global warming and environmental conservation. In spite of an emerging pool of knowledge on the nanocellulose downstream application, that was lacking of cross-disciplinary study of its role as a soft condensed matter for food, water and energy applications toward environmental sustainability. Here we aim to provide an insight for the latest development of cellulose nanotechnology arises from its fascinating physical and chemical characteristic for the interest of different technology holders.
    Matched MeSH terms: Hydrolysis
  15. Liew YX, Chan YJ, Manickam S, Chong MF, Chong S, Tiong TJ, et al.
    Sci Total Environ, 2020 Apr 15;713:136373.
    PMID: 31954239 DOI: 10.1016/j.scitotenv.2019.136373
    Oil and grease, carbohydrate, protein, and lignin are the main constituents of high strength wastewaters such as dairy wastewater, cheese whey wastewater, distillery wastewater, pulp and paper mill wastewater, and slaughterhouse wastewaters. These constituents have contributed to various operational problems faced by the high-rate anaerobic bioreactor (HRAB). During the hydrolysis stage of anaerobic digestion (AD), these constituents can be hydrolyzed. Since hydrolysis is known to be the rate-limiting step of AD, the overall AD can be enhanced by improving the hydrolysis stage. This can be done by introducing pretreatment that targets the degradation of these constituents. This review mainly focuses on the biological pretreatment on various high-strength wastewaters by using different types of enzymes namely lipase, amylase, protease, and ligninolytic enzymes which are responsible for catalyzing the degradation of oil and grease, carbohydrate, protein, and lignin respectively. This review provides a summary of enzymatic systems involved in enhancing the hydrolysis stage and consequently improve biogas production. The results show that the use of enzymes improves the biogas production in the range of 7 to 76%. Though these improvements are highly dependent on the operating conditions of pretreatment and the types of substrates. Therefore, the critical parameters that would affect the effectiveness of pretreatment are also discussed. This review paper will serve as a useful piece of information to those industries that face difficulties in treating their high-strength wastewaters for the appropriate process, equipment selection, and design of an anaerobic enzymatic system. However, more intensive studies on the optimum operating conditions of pretreatment in a larger-scale and synergistic effects between enzymes are necessary to make the enzymatic pretreatment economically feasible.
    Matched MeSH terms: Hydrolysis
  16. Cheong, Chooi Wei, Siti Aqlima Ahmad, Ooi, Peck Toung, Phang, Lai Yee
    MyJurnal
    Feather waste is a potential renewable source to recover valuable products because it is being a rich source of keratin proteins and amino acids. It can be used to make feather meal, fertilizer and yarn sizing agent. Various treatments have been used to recover the protein from chicken feathers as the keratinous feathers cannot be easily degraded due to its tough structure. This paper reviews the existing treatment methods used to hydrolyze chicken feathers. The treatment methods for feather hydrolysis such as physical, chemical, biological and combined treatments as well as their advantages and challenges are highlighted. The effects of these treatments on feather hydrolysis are complex and vary in regards to the performance of feather hydrolysis and product yielded. Hence, it is important to choose an appropriate treatment method since the type of treatment applied affects the product yielded qualitatively and quantitatively. In addition, the economic assessment and environmental impact of the choice of treatment should be considered also.
    Matched MeSH terms: Hydrolysis
  17. Khairiatul Nabilah Jansar, Ahmad Muhaimin Roslan, Mohd Ali Hassan
    MyJurnal
    Oil palm (Elaeis guineensis Jacq.) is one of the most planted trees in Malaysia for the palm oil production. Thus, solid biomass had been generated from this industry such as empty fruit bunch, shell, mesocarp fibre, frond and trunk produced that causes problematic to the nation and expected to escalate up to 85-110 million tonnes by 2020. Besides that, palm oil mill effluent and excessive steam also generated from the production of palm oil. In situ hydrothermal pretreatment means the utilisation of excessive steam produced by the oil palm mill and at the same time, generating value added product as well as reducing the biomass. Oil palm biomass is rich in lignocellulosic materials which comprised of lignin, hemicellulose and cellulose. Refinement of lignocellulosic from oil palm biomass can be utilised to form fermentable sugar, bioethanol and other potential chemicals. Recalcitrant property of lignocellulosic reduces the ability of enzymes to penetrate, thus pretreatment is required prior to hydrolysis process. Pretreatment can be either physical, chemical, biological or combined. In this review paper, three types of hydrothermal pretreatment were discussed as suitable in situ pretreatment process for oil palm biomass; in palm oil mill. The suitability was measured based on the availability of excess steam and energy in the mill. Furthermore, physicochemical pretreatment also facilitate the saccharification process, whereby it loosened the lignocellulose structure and increase the surface area. The effects and factors in choosing right pretreatment are highlighted in this paper.
    Matched MeSH terms: Hydrolysis
  18. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2008 May 16;73(10):3730-7.
    PMID: 18410141 DOI: 10.1021/jo702695k
    The apparent second-order rate constant (k OH) for hydroxide-ion-catalyzed conversion of 1 to N-(2'-methoxyphenyl)phthalamate (4) is approximately 10(3)-fold larger than k OH for alkaline hydrolysis of N-morpholinobenzamide (2). These results are explained in terms of the reaction scheme 1 --> k(1obs) 3 --> k(2obs) 4 where 3 represents N-(2'-methoxyphenyl)phthalimide and the values of k(2obs)/k(1obs) vary from 6.0 x 10(2) to 17 x 10(2) within [NaOH] range of 5.0 x 10(-3) to 2.0 M. Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 1 decrease from 21.7 x 10(-3) to 15.6 x 10(-3) s(-1) with an increase in ionic strength (by NaCl) from 0.5 to 2.5 M at 0.5 M NaOH and 35 degrees C. The values of k obs, obtained for alkaline hydrolysis of 2 within [NaOH] range 1.0 x 10(-2) to 2.0 M at 35 degrees C, follow the relationship k(obs) = kOH[HO(-)] + kOH'[HO (-)] (2) with least-squares calculated values of kOH and kOH' as (6.38 +/- 0.15) x 10(-5) and (4.59 +/- 0.09) x 10(-5) M (-2) s(-1), respectively. A few kinetic runs for aqueous cleavage of 1, N'-morpholino-N-(2'-methoxyphenyl)-5-nitrophthalamide (5) and N'-morpholino-N-(2'-methoxyphenyl)-4-nitrophthalamide (6) at 35 degrees C and 0.05 M NaOH as well as 0.05 M NaOD reveal the solvent deuterium kinetic isotope effect (= k(obs) (H 2) (O)/ k(obs) (D 2 ) (O)) as 1.6 for 1, 1.9 for 5, and 1.8 for 6. Product characterization study on the cleavage of 5, 6, and N-(2'-methoxyphenyl)-4-nitrophthalimide (7) at 0.5 M NaOD in D2O solvent shows the imide-intermediate mechanism as the exclusive mechanism.
    Matched MeSH terms: Hydrolysis
  19. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2007 Oct 26;72(22):8452-8.
    PMID: 17918997
    A kinetic study on the aqueous cleavage of N-(2-methoxyphenyl)phthalimide (1) and N-(2-hydroxyphenyl)phthalimide (2), under the buffers of N-methylmorpholine, reveals the equilibrium presence of monocationic amide (Ctam) formed due to nucleophilic reactions of N-methylmorpholine with 1 and 2. Pseudo-first-order rate constants for the reactions of water and HO- with Ctam (formed through nucleophilic reaction of N-methylmorpholine with 1) are 4.60 x 10(-5) s-1 and 47.9 M-1 s-1, respectively. But the cleavage of Ctam, formed through nucleophilic reaction of N-methylmorpholine with 2, involves intramolecular general base (2'-O- group of Ctam)-assisted water attack at carbonyl carbon of cationic amide group of Ctam in or before the rate-determining step.
    Matched MeSH terms: Hydrolysis
  20. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2007 Mar 30;72(7):2392-401.
    PMID: 17341117
    The rates of the hydrolyses of N-(o-hydroxyphenyl)phthalimide (1) and N-(o-methoxyphenyl)phthalimide (2), studied at different pH, show that the hydrolysis of 1 involves intramolecular general base (IGB) assistance where the o-O- group of ionized 1 acts as IGB and H2O as the reactant. The rate enhancement due to the IGB-assisted reaction of H2O with ionized 1 is>8x10(4)-fold. Pseudo-first-order rate constant for the reaction of water with 2 is approximately 2x10(3)-fold smaller than the first-order rate constant (0.10 s-1) for pH-independent hydrolysis of 1 within the pH range of 9.60-10.10. Second-order rate constants (kOH) for hydroxide ion-assisted hydrolysis of ionized 1 and 2 are 3.0 and 29.1 M-1 s-1, respectively. The solvent deuterium kinetic isotope effect (dKIE) on the rate of alkaline hydrolysis of 1 and 2 reveals that the respective values of kOH/kOD are 0.84 and 0.78, where kOD represents the second-order rate constant for DO--assisted cleavage of these imides (1 and 2). The value of kwH2O/kdD2O is 2.04, with kwH2O and kdD2O representing pseudo-first-order rate constants for the reactions of ionized 1 with H2O and D2O, respectively.
    Matched MeSH terms: Hydrolysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links