MATERIALS AND METHODS: A systematic search of PubMed and Scopus databases was done to identify the articles that are relevant to the topic including systematic reviews and original articles.
RESULTS: Several studies showed that both serum and urine Gd-IgA1 differentiate IgA nephropathy patients from healthy people and other glomerulonephropathies. Thus, it is useful as a less invasive diagnostic biomarker, although detection methods varied between studies with different sensitivities. There are various reports of its use as a prognostic parameter. Evidence is emerging for its use as a monitoring parameter for treatment.
CONCLUSION: Galactose deficient IgA1 is a promising biomarker in the management of IgA nephropathy, although a more robust and standardised means of estimation is required.
Methods: A total of 40 healthy pedodontic subjects (aged 8-15 years) were recruited in the present study. They were equally divided into Group A (fixed orthodontic group) and Group B (removable orthodontic group) with 20 subjects each. 1.5 mL of saliva per subject was obtained before 3 and 6 months after treatment. Enzyme Linked Immunosorbent Assay (ELISA) technique was used for measurement of Salivary IgA levels.
Results: Group A and B both showed significant rise in S-IgA levels 3 months and 6 months post active orthodontic treatment. Mean value of S-IgA 3 months post treatment in the saliva of children in group B and group A were (144.27 ± 5.32) and (164.0 ± 3.23) μg/ml respectively. While mean value of S-IgA after 6 months of treatment in group B and group A were (149.8 ± 6.02) and (166.4 ± 3.65) μg/ml respectively.
Conclusion: Salivary Immunoglobulin A level values were significantly higher statistically in both group A and group B post active orthodontic treatment than before. The results however, showed that Group A (fixed orthodontic group) showed statistically significant higher levels of S-IgA than Group B (removable orthodontic group). Active orthodontic treatment triggered a stronger stimulus for oral secretory immunity, hence the increase in levels were detected. There is a significant positive correlation between S-IgA and active fixed as well as removable orthodontic treatment. Orthodontic treatment is hence a local immunogenic factor.
METHODS: We used a case-control study design nested within a large prospective cohort to assess the association between circulating levels of anti-lipopolysaccharide (LPS) and anti-flagellin immunoglobulin A (IgA) and G (IgG) (reflecting long-term exposures to LPS and flagellin, respectively) and risk of hepatocellular carcinoma. A total of 139 men and women diagnosed with hepatocellular carcinoma between 1992 and 2010 were matched to 139 control subjects. Multivariable rate ratios (RRs), including adjustment for potential confounders, hepatitis B/C positivity, and degree of liver dysfunction, were calculated with conditional logistic regression.
RESULTS: Antibody response to LPS and flagellin was associated with a statistically significant increase in the risk of hepatocellular carcinoma (highest vs. lowest quartile: RR = 11.76, 95% confidence interval = 1.70-81.40; P trend = 0.021). This finding did not vary substantially by time from enrollment to diagnosis, and did not change after adjustment for chronic infection with hepatitis B and C viruses.
CONCLUSIONS: These novel findings, based on exposures up to several years prior to diagnosis, support a role for gut-derived bacterial products in hepatocellular carcinoma development. Further study into the role of gut barrier failure and exposure to bacterial products in liver diseases is warranted.