Displaying all 14 publications

Abstract:
Sort:
  1. de Jong JC, Rimmelzwaan GF, Donker GA, Meijer A, Fouchier RA, Osterhaus AD
    Ned Tijdschr Geneeskd, 2007 Sep 29;151(39):2158-65.
    PMID: 17957994
    The influenza epidemic of 2006/'07 began late in the season, like the two previous influenza epidemics. In week 8 a peak of modest height was reached. As usual, the causal strains were mainly A/H3N2 viruses and to a lesser extent A/H1N1 and B viruses. A new A/H1N1 virus variant has emerged, an event that on average takes place only every 10 years. However, almost all A/H1N1 virus isolates belonged to the old variant and were similar to the vaccine virus. The A/H3N2 virus isolates appeared to deviate from the vaccine strain, but after antigenic cartographic analysis and correction for low avidity they proved also closely related to the vaccine strain. The few type B virus isolates belonged to the B/Yamagata/16/88 lineage, whereas the used B vaccine virus had been chosen from the B/Victoria/2/87 lineage. The vaccine therefore will have provided almost optimal protection against the circulating influenza A/H1N1 and A/H3N2 viruses but not against the influenza B viruses. For the 2007/'08 influenza season the World Health Organization has recommended the following vaccine composition: A/Solomon Islands/3/06 (H1N1) (new), A/Wisconsin/67/05 (H3N2), and B/Malaysia/2506/04.
    Matched MeSH terms: Influenza A virus/immunology
  2. Sharma A, Lal SK
    Rev Med Virol, 2019 05;29(3):e2036.
    PMID: 30706579 DOI: 10.1002/rmv.2036
    Tetherin, an interferon-inducible gene was first discovered to be an antiviral factor in 2008. A vast range of viruses, such as influenza A virus (IAV), dengue virus, Ebola virus, HIV, and RSV, have been reported to be susceptible to the antiviral activity of tetherin. Multiple reports have been published encompassing the role of tetherin in the IAV life cycle. To date, nine reports have been published regarding the role of tetherin in the IAV life cycle, with four reports supporting tetherin as an antiviral factor while five other reports suggesting no effect. To this end, this review summarizes the list of viruses currently known to be inhibited by tetherin and describes mechanisms used by viruses to overcome the antiviral potential of tetherin. Further, using IAV as disease model, we provide existing evidence in favor and against tetherin being considered as an antiviral candidate. Subsequent analysis of the experimental procedures across IAV-tetherin published reports revealed that the experimental setup (ie, cell lines, transfection reagents, and multiplicity of infection), strain-specific activity of NS1, and differing roles of NS1 in different cell lines may add up to the contributing factors leading to the discrepancies observed.
    Matched MeSH terms: Influenza A virus/immunology*
  3. Lal SK
    Viruses, 2020 08 09;12(8).
    PMID: 32784813 DOI: 10.3390/v12080870
    We are in the midst of a pandemic where the infective agent has been identified, but how it causes mild disease in some and fatally severe disease in other infected individuals remains a mystery [...].
    Matched MeSH terms: Influenza A virus/immunology
  4. Beran J, Peeters M, Dewé W, Raupachová J, Hobzová L, Devaster JM
    BMC Infect Dis, 2013;13:224.
    PMID: 23688546 DOI: 10.1186/1471-2334-13-224
    Two phylogenetic lineages of influenza B virus coexist and circulate in the human population (B/Yamagata and B/Victoria) but only one B-strain is included in each seasonal vaccine. Mismatch regularly occurs between the recommended and circulating B-strain. Inclusion of both lineages in vaccines may offer better protection against influenza.
    Matched MeSH terms: Influenza A virus/immunology
  5. Keynan Y, Card CM, Ball BT, Li Y, Plummer FA, Fowke KR
    Clin Microbiol Infect, 2010 Aug;16(8):1179-86.
    PMID: 20670292 DOI: 10.1111/j.1469-0691.2010.03142.x
    Influenza vaccine provides protection against infection with matched strains, and this protection correlates with serum antibody titres. In addition to antibodies, influenza-specific CD8+ T-lymphocyte responses are important in decreasing disease severity and facilitating viral clearance. Because this response is directed at internal, relatively conserved antigens, it affords some cross-protection within a given subtype of influenza virus. With the possibility of a broader A(H1N1) Mexico outbreak in the fall of 2009, it appeared worthwhile studying the degree of cellular immune response-mediated cross-reactivity among influenza virus isolates. The composition of the 2006-2007 influenza vaccine included the A/New Caledonia/20/1999 strain (comprising a virus that has been circulating, and was included in vaccine preparations, for 6-7 years) and two strains not previously included (Wisconsin and Malaysia). This combination afforded us the opportunity to determine the degree of cross-reactive cellular immunity after exposure to new viral strains. We analysed the antibody responses and the phenotype and function of the T cell response to vaccine components. The results obtained show that antibody responses to A/New-Caledonia were already high and vaccination did not increase antibody or cytotoxic T lymphocyte responses. These data suggest that repeated exposure to the same influenza stain results in limited boosting of humoral and cellular immune responses.
    Matched MeSH terms: Influenza A virus/immunology*
  6. Mustafa AN, Gessner BD, Ismail R, Yusoff AF, Abdullah N, Ishak I, et al.
    Int J Infect Dis, 2003 Sep;7(3):210-4.
    PMID: 14563225
    To determine influenza vaccine effectiveness against clinically defined influenza-like illness among Malaysian pilgrims attending the Haj in Saudi Arabia.
    Matched MeSH terms: Influenza A virus/immunology
  7. Irving AT, Zhang Q, Kong PS, Luko K, Rozario P, Wen M, et al.
    Cell Rep, 2020 11 03;33(5):108345.
    PMID: 33147460 DOI: 10.1016/j.celrep.2020.108345
    Bat cells and tissue have elevated basal expression levels of antiviral genes commonly associated with interferon alpha (IFNα) signaling. Here, we show Interferon Regulatory Factor 1 (IRF1), 3, and 7 levels are elevated in most bat tissues and that, basally, IRFs contribute to the expression of type I IFN ligands and high expression of interferon regulated genes (IRGs). CRISPR knockout (KO) of IRF 1/3/7 in cells reveals distinct subsets of genes affected by each IRF in an IFN-ligand signaling-dependent and largely independent manner. As the master regulators of innate immunity, the IRFs control the kinetics and maintenance of the IRG response and play essential roles in response to influenza A virus (IAV), herpes simplex virus 1 (HSV-1), Melaka virus/Pteropine orthoreovirus 3 Melaka (PRV3M), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) infection. With its differential expression in bats compared to that in humans, this highlights a critical role for basal IRF expression in viral responses and potentially immune cell development in bats with relevance for IRF function in human biology.
    Matched MeSH terms: Influenza A virus/immunology
  8. Suleman M, Sayaf AM, Khan A, Khan SA, Albekairi NA, Alshammari A, et al.
    J Infect Public Health, 2024 Jul;17(7):102448.
    PMID: 38815532 DOI: 10.1016/j.jiph.2024.05.005
    BACKGROUND: Influenza A virus causes severe respiratory illnesses, especially in developing nations where most child deaths under 5 occur due to lower respiratory tract infections. The RIG-I protein acts as a sensor for viral dsRNA, triggering interferon production through K63-linked poly-ubiquitin chains synthesized by TRIM25. However, the influenza A virus's NS1 protein hinders this process by binding to TRIM25, disrupting its association with RIG-I and preventing downstream interferon signalling, contributing to the virus's evasion of the immune response.

    METHODS: In our study we used structural-based drug designing, molecular simulation, and binding free energy approaches to identify the potent phytocompounds from various natural product databases (>100,000 compounds) able to inhibit the binding of NS1 with the TRIM25.

    RESULTS: The molecular screening identified EA-8411902 and EA-19951545 from East African Natural Products Database, NA-390261 and NA-71 from North African Natural Products Database, SA-65230 and SA- 4477104 from South African Natural Compounds Database, NEA- 361 and NEA- 4524784 from North-East African Natural Products Database, TCM-4444713 and TCM-6056 from Traditional Chinese Medicines Database as top hits. The molecular docking and binding free energies results revealed that these compounds have high affinity with the specific active site residues (Leu95, Ser99, and Tyr89) involved in the interaction with TRIM25. Additionally, analysis of structural dynamics, binding free energy, and dissociation constants demonstrates a notably stronger binding affinity of these compounds with the NS1 protein. Moreover, all selected compounds exhibit exceptional ADMET properties, including high water solubility, gastrointestinal absorption, and an absence of hepatotoxicity, while adhering to Lipinski's rule.

    CONCLUSION: Our molecular simulation findings highlight that the identified compounds demonstrate high affinity for specific active site residues involved in the NS1-TRIM25 interaction, exhibit exceptional ADMET properties, and adhere to drug-likeness criteria, thus presenting promising candidates for further development as antiviral agents against influenza A virus infections.

    Matched MeSH terms: Influenza A virus/immunology
  9. Khalaj-Hedayati A, Chua CLL, Smooker P, Lee KW
    Influenza Other Respir Viruses, 2020 Jan;14(1):92-101.
    PMID: 31774251 DOI: 10.1111/irv.12697
    The threat of novel influenza infections has sparked research efforts to develop subunit vaccines that can induce a more broadly protective immunity by targeting selected regions of the virus. In general, subunit vaccines are safer but may be less immunogenic than whole cell inactivated or live attenuated vaccines. Hence, novel adjuvants that boost immunogenicity are increasingly needed as we move toward the era of modern vaccines. In addition, targeting, delivery, and display of the selected antigens on the surface of professional antigen-presenting cells are also important in vaccine design and development. The use of nanosized particles can be one of the strategies to enhance immunogenicity as they can be efficiently recognized by antigen-presenting cells. They can act as both immunopotentiators and delivery system for the selected antigens. This review will discuss on the applications, advantages, limitations, and types of nanoparticles (NPs) used in the preparation of influenza subunit vaccine candidates to enhance humoral and cellular immune responses.
    Matched MeSH terms: Influenza A virus/immunology
  10. Suriya R, Hassan L, Omar AR, Aini I, Tan CG, Lim YS, et al.
    Zoonoses Public Health, 2008 Sep;55(7):342-51.
    PMID: 18667027 DOI: 10.1111/j.1863-2378.2008.01138.x
    Following a series of H5N1 cases in chickens and birds in a few states in Malaysia, there was much interest in the influenza A viruses subtypes that circulate among the local pig populations. Pigs may act as a mixing vessel for avian and mammal influenza viruses, resulting in new reassorted viruses. This study investigated the presence of antibodies against influenza H1N1 and H3N2 viruses in pigs from Peninsular Malaysia using Herdcheck Swine Influenza H1N1 and H3N2 Antibody Test Kits. At the same time, the presence of influenza virus was examined from the nasal swabs of seropositive pigs by virus isolation and real time RT-PCR. The list of pig farms was obtained from the headquarters of the Department of Veterinary Services, Malaysia, and pig herds were selected randomly from six of 11 states in Peninsular Malaysia. A total of 727 serum and nasal swab samples were collected from 4- to 6-month-old pigs between May and August 2005. By ELISA, the seroprevalences of swine influenza H1N1 and H3N2 among pigs were 12.2% and 12.1% respectively. Seropositivity for either of the virus subtypes was detected in less than half of the 41 sampled farms (41.4%). Combination of both subtypes was detected in 4% of all pigs and in 22% of sampled farms. However, no virus or viral nucleic acid was detected from nasal samples. This study identified that the seropositivity of pigs to H1N1 and H3N2 based on ELISA was significantly associated with factors such as size of farm, importation or purchase of pigs, proximity of farm to other pig farms and the presence of mammalian pets within the farm.
    Matched MeSH terms: Influenza A virus/immunology*
  11. Kumari R, Guo Z, Kumar A, Wiens M, Gangappa S, Katz JM, et al.
    Antiviral Res, 2020 Apr;176:104747.
    PMID: 32092305 DOI: 10.1016/j.antiviral.2020.104747
    Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPβ) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPβ phosphorylation and its recruitment to the RIG-I promoter as a C/EBPβ/NS1 complex. C/EBPβ overexpression and siRNA knockdown in human lung epithelial cells resulted in suppression and activation of RIG-I expression respectively, implying a negative regulatory role of C/EBPβ. Further, C/EBPβ phosphorylation, its interaction with NS1 and occupancy at the RIG-I promoter was associated with RIG-I transcriptional inhibition. These findings provide an important insight into the molecular mechanism by which influenza NS1 commandeers RIG-I transcriptional regulation and suppresses host antiviral responses.
    Matched MeSH terms: Influenza A virus/immunology
  12. Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F
    Viral Immunol, 2016 05;29(4):198-211.
    PMID: 26900835 DOI: 10.1089/vim.2015.0127
    Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
    Matched MeSH terms: Influenza A virus/immunology*
  13. Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, et al.
    Nat Microbiol, 2019 05;4(5):789-799.
    PMID: 30804542 DOI: 10.1038/s41564-019-0371-3
    Bats are special in their ability to host emerging viruses. As the only flying mammal, bats endure high metabolic rates yet exhibit elongated lifespans. It is currently unclear whether these unique features are interlinked. The important inflammasome sensor, NLR family pyrin domain containing 3 (NLRP3), has been linked to both viral-induced and age-related inflammation. Here, we report significantly dampened activation of the NLRP3 inflammasome in bat primary immune cells compared to human or mouse counterparts. Lower induction of apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and secretion of interleukin-1β in response to both 'sterile' stimuli and infection with multiple zoonotic viruses including influenza A virus (-single-stranded (ss) RNA), Melaka virus (PRV3M, double-stranded RNA) and Middle East respiratory syndrome coronavirus (+ssRNA) was observed. Importantly, this reduction of inflammation had no impact on the overall viral loads. We identified dampened transcriptional priming, a novel splice variant and an altered leucine-rich repeat domain of bat NLRP3 as the cause. Our results elucidate an important mechanism through which bats dampen inflammation with implications for longevity and unique viral reservoir status.
    Matched MeSH terms: Influenza A virus/immunology
  14. Lim KL, Jazayeri SD, Yeap SK, Mohamed Alitheen NB, Bejo MH, Ideris A, et al.
    Res Vet Sci, 2013 Dec;95(3):1224-34.
    PMID: 23948357 DOI: 10.1016/j.rvsc.2013.07.013
    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.
    Matched MeSH terms: Influenza A virus/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links