METHODS: Patients who were 10-80 years old and presented with a Graeb score of more than six were randomised into endoscopic washout and EVD treatment groups. A CT brain was repeated on each patient within 24 hours after surgery, and if a patient's Graeb score was still more than six, a repeat endoscopic washout was performed to clear the remaining clots. All patients were monitored for shunt dependency at two weeks and three months, and clinical outcomes were measured at six months after the procedure.
RESULTS: A total of 39 patients were recruited; 19 patients were randomised into the endoscopic washout group, and 20 were randomised into the EVD group. However, three patients in the endoscopic group refused that treatment and opted for EVD insertion. Patients treated with endoscopic washout had significantly less drainage dependency at two weeks (P < 0.005) and at three months (P < 0.004) as compared to patients in the external ventricular drainage group. The reduction in Graeb scores was also significantly greater in the endoscopic washout group (P < 0.001). However, the functional outcome at six months measured via a modified Rankin scale score was no different in the two groups of patients. The difference in the functional outcome of the patients was mainly dependent on the initial pathology, with those presenting with a thalamic bleed with IVH showing a poor functional outcome. This parameter was also influenced by the Glasgow Coma Scale (GCS) score on admission, with those patients with a score of 12 or less having a poor functional outcome (MRS 5-6) at three and six months after the surgery.
CONCLUSIONS: The use of neuroendoscopy in patients with a massive IVH significantly reduced drainage dependency. However, it did not alter the final functional outcome.
Case Report: In this paper, an unusual case of bilateral SSNHL secondary to bilateral CVT with rapid and complete recovery is reported. The patient presented with sudden bilateral hearing loss associated with some neurological symptoms. Initial computed tomography (CT) venography revealed a CVT of bilateral transverse sinuses. The patient was started on an anticoagulant and imaging was repeated after five days, revealing the absence of the thrombosis. Serial pure tone audiometry (PTA) showed complete recovery of bilateral hearing within 10 days.
Conclusion: Early detection and intervention may fasten hearing recovery and improve the quality of life. The immediate restoration of venous blood flow and intracranial pressure may lead to the complete recovery of bilateral hearing loss.
OBJECTIVES: The objective of the study is to find a correlation between sonographic measurements of ONSD value with ICP value measured via the gold standard invasive intracranial ICP catheter, and to find the cut-off value of ONSD measurement in predicting raised ICP, along with its sensitivity and specificity value.
METHODS: A prospective observational study was performed using convenience sample of 41 adult neurosurgical patients treated in neurosurgical intensive care unit with invasive intracranial pressure monitoring placed in-situ as part of their clinical care. Portable SonoSite ultrasound machine with 7 MHz linear probe were used to measure optic nerve sheath diameter using the standard technique. Simultaneous ICP readings were obtained directly from the invasive monitoring.
RESULTS: Seventy-five measurements were performed on 41 patients. The non-parametric Spearman correlation test revealed a significant correlation at the 0.01 level between the ICP and ONSD value, with correlation coefficient of 0.820. The receiver operating characteristic curve generated an area under the curve with the value of 0.964, and with standard error of 0.22. From the receiver operating characteristic curve, we found that the ONSD value of 5.205 mm is 95.8% sensitive and 80.4% specific in detecting raised ICP.
CONCLUSIONS: ONSD value of 5.205 is sensitive and specific in detecting raised ICP. Bedside ultrasound measurement of ONSD is readily learned, and is reproducible and reliable in predicting raised ICP. This non-invasive technique can be a useful adjunct to the current invasive intracranial catheter monitoring, and has wide potential clinical applications in district hospitals, emergency departments and intensive care units.