Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Armugam A, Earnest L, Chung MC, Gopalakrishnakone P, Tan CH, Tan NH, et al.
    Toxicon, 1997 Jan;35(1):27-37.
    PMID: 9028006
    cDNAs encoding three phospholipase A2 (PLA2) isoforms in Naja naja sputatrix were cloned and characterized. One of them encoded an acidic PLA2 (APLA) while the others encoded neutral PLA2 (NPLA-1 and NPLA-2). The specific characteristics of APLA and NPLA were attributed to mutations at nt139 and nt328 from G to C and G to A, respectively, resulting in amino acid substitutions from Asp20 and 83 in APLA to His20 and Asn83 in NPLA. Amino acid sequencing of purified protein also showed the presence of this Asp20 and His20 in APLA and NPLA, respectively. The cDNA encoding one of the PLA2 (NAJPLA-2A), when expressed in Escherichia coli, yielded a protein that exhibited PLA2 activity.
    Matched MeSH terms: Isoenzymes/genetics*
  2. Baerson SR, Rodriguez DJ, Tran M, Feng Y, Biest NA, Dill GM
    Plant Physiol, 2002 Jul;129(3):1265-75.
    PMID: 12114580
    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.
    Matched MeSH terms: Isoenzymes/genetics
  3. Biglari S, Hanafiah A, Mohd Puzi S, Ramli R, Rahman M, Lopes BS
    Microb Drug Resist, 2017 Jul;23(5):545-555.
    PMID: 27854165 DOI: 10.1089/mdr.2016.0130
    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-blaOXA-23and ISAba1-blaADCand had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the blaOXA-51-likegenes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.
    Matched MeSH terms: Isoenzymes/genetics
  4. Black WC, Hawley WA, Rai KS, Craig GB
    Heredity (Edinb), 1988 Dec;61 ( Pt 3):439-46.
    PMID: 3230033
    The mosquito, Aedes albopictus, has recently become established in a number of cities throughout the United States. An initial survey of allozyme and genotypic frequencies in U.S. populations (Black et al., 1988) revealed an extensive amount of local differentiation of populations and suggested that much genetic drift may have accompanied colonization. A study of gene flow was initiated in native habitats of Ae. albopictus in Malaysia to determine if the result observed in the U.S. was a consequence of colonization or simply followed the natural breeding structure of the species. Allelic and genotypic frequencies were monitored at ten enzymatic loci in 11 populations from peninsular Malaysia and Borneo. Multiple populations were sampled within the districts of Kuala Lumpur and Kuala Trengganu. Peninsular Malaysian and Borneo populations were strongly genetically differentiated. Allele frequencies were significantly different among and within districts in both regions. Variance in allele frequencies among all collections was partitioned into the variance among regions, districts within regions and collections within districts. Almost all of the variance within regions was attributable to local differentiation suggesting that genetic drift is an important component of the natural breeding structure of this species. This indicates that the large amounts of local differentiation found in U.S. populations was not a consequence of recent colonization.
    Matched MeSH terms: Isoenzymes/genetics
  5. Bon MC
    Electrophoresis, 1996 Jul;17(7):1248-52.
    PMID: 8855412
    A combination of a modified Feret' (Silvae Genet. 1971, 20, 46-50) extraction buffer and two types of electrophoresis with acrylamide and starch gels were used to characterize allozymes in mature vegetative tissue of a commercially high value species of rattans (Calamus subinermis). From the analysis of allelic segregation from single maternal rattans and their offspring, genetic control of the 16 observed banding zones, which were consistently scorable, was assumed. Seventeen gene loci were identified. The percentage of polymorphic loci within Calamus subinermis was much higher (70.5%) than expected levels of genetic diversity for tropical woody and non-woody species. It is thought that the protocol described may be applied to the analysis of the genetic diversity of all the endangered Calamus species.
    Matched MeSH terms: Isoenzymes/genetics*
  6. Chan KL, Yushayati Y, Guganeswaran P
    Biochem Genet, 1991 Aug;29(7-8):337-44.
    PMID: 1747096
    A biochemical genetic study of the enzyme malate dehydrogenase (MDH) was conducted in the grasshopper Oxya j. japonica. Analysis of MDH electrophoretic variation in this species of grasshopper shows that one of the two autosomal loci for MDH in grasshoppers, the Mdh-2 locus, controlling the anodal set of MDH isozymes, is duplicated. Results of breeding studies confirm this and the observed polymorphism at the Mdh-2 locus in the two populations of Oxya j. japonica studied can be attributed to three forms of linked alleles at the duplicated locus in equilibrium in both populations. In this respect, all individuals of this species possess heterozygous allelic combinations at the duplicated Mdh-2 locus, which may account for the spread of the duplicated locus in the populations of this species of grasshopper.
    Matched MeSH terms: Isoenzymes/genetics
  7. Choh MS, Yap CK, Tan SG, Jambari HA
    Genetika, 2006 Jan;42(1):49-57.
    PMID: 16523665
    Shell morphological characters and allozyme electrophoresis were used to study the relationships among six geographical populations of land snails collected from Peninsular Malaysia. Allozyme electrophoresis was used to study the genetic variations to complement the morphological features studied that included shell lengths, numbers of whorls and shell colour. Ten loci coding for six enzymes (MDH, LAP, ALP, PGM, G6PDH and EST) could be reliably scored in samples from the six populations studied. The dendrogram showed two major clusters with one cluster comprising Subulinidae populations from Perak, Selangor, Johor, Terengganu and Pahang while the other cluster included only the Streptaxidae Huttonella bicolor (red) population. The Subulinidae populations were grouped into two subclusters: one subcluster included the Subulina sp. populations from Perak, Selangor an Johor while the other subcluster included the Opeas sp. populations from Terengganu and Pahang. Morphological features can identify the different families and therefore they can complement the allozyme genetic studies on the land snail populations. Like other reports in the literature, our results also underline the importance of a genetic approach in conjunction with a morphological approach, for discriminating land snail species. The present results suggest that small land snails, which were similar in colour but different in sizes, were not of the same family/genus.
    Matched MeSH terms: Isoenzymes/genetics
  8. Chuman Y, Nobuhisa I, Ogawa T, Deshimaru M, Chijiwa T, Tan NH, et al.
    Toxicon, 2000 Mar;38(3):449-62.
    PMID: 10669032
    In accordance with detection of a few phospholipase A2 (PLA2) isozyme genes by Southern blot analysis, only two cDNAs, named NnkPLA-I , and NnkPLA-II, encoding group I PLA2s, NnkPLA-I and NnkPLA-II, respectively, were isolated from the venom gland cDNA library of Elapinae Naja naja kaouthia of Malaysia. NnkPLA-I and NnkPLA-II showed four amino acid substitutions, all of which were brought about by single nucleotide substitution. No existence of clones encoding CM-II and CM-III, PLA2 isozymes which had been isolated from the venom of N. naja kaouthia of Thailand, in Malaysian N. naja kaouthia venom gland cDNA library was verified by dot blot hybridization analysis with particular probes. NnkPLA-I and NnkPLA-II differed from CM-II and CM-III with four and two amino acid substitutions, respectively, suggesting that their molecular evolution is regional. The comparison of NnkPLA-I, NnkPLA-II and cDNAs encoding other group I snake venom gland PLA2s indicated that the 5'- and 3'-untranslated regions are more conserved than the mature protein-coding region and that the number of nucleotide substitutions per nonsynonymous site is almost equal to that per synonymous site in the protein-coding region, suggesting that accelerated evolution has occurred in group I venom gland PLA2s possibly to acquire new physiological functions.
    Matched MeSH terms: Isoenzymes/genetics
  9. Dehbozorgi M, Kamalidehghan B, Hosseini I, Dehghanfard Z, Sangtarash MH, Firoozi M, et al.
    Mol Med Rep, 2018 03;17(3):4195-4202.
    PMID: 29328413 DOI: 10.3892/mmr.2018.8377
    Polymorphisms in the cytochrome P (CYP) 450 family may cause adverse drug responses in individuals. Cytochrome P450 2C19 (CYP2C19) is a member of the CYP family, where the presence of the 681 G>A, 636 G>A and 806 C>T polymorphisms result in the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. In the current study, the frequency of the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles in an Iranian population cohort of different ethnicities were examined and then compared with previously published frequencies within other populations. Allelic and genotypic frequencies of the CYP2C19 alleles (*2, *3 and *17) were detected using polymerase chain reaction (PCR)‑restriction fragment length polymorphism analysis, PCR‑single‑strand conformation polymorphism analysis and DNA sequencing from blood samples of 1,229 unrelated healthy individuals from different ethnicities within the Iranian population. The CYP2C19 allele frequencies among the Iranian population were 21.4, 1.7, and 27.1% for the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. The frequency of the homozygous A/A variant of the CYP2C19*2 allele was significantly high and low in the Lur (P<0.001) and Caspian (P<0.001) ethnicities, respectively. However, the frequency of the homozygous A/A variant of the CYP2C19*3 allele was not detected in the Iranian cohort in the current study. The frequency of the heterozygous G/A variant of the CYP2C19*3 allele had the significantly highest and lowest frequency in the Fars (P<0.001) and Lur (P<0.001) groups, respectively. The allele frequency of the homozygous T/T variant of the CYP2C19*17 allele was significantly high in the Caspian (P<0.001) and low in the Kurd (P<0.05) groups. The frequency of the CYP2C19 alleles involved in drug metabolism, may improve the clinical understanding of the ethnic differences in drug responses, resulting in the advancement of the personalized medicine among the different ethnicities within the Iranian population.
    Matched MeSH terms: Isoenzymes/genetics
  10. Dzaki N, Wahab W, Azlan A, Azzam G
    Biochem Biophys Res Commun, 2018 10 20;505(1):106-112.
    PMID: 30241946 DOI: 10.1016/j.bbrc.2018.09.074
    CTP Synthase (CTPS) is a metabolic enzyme that is recognized as a catalyst for nucleotide, phospholipid and sialoglycoprotein production. Though the structural characteristics and regulatory mechanisms of CTPS are well-understood, little is known regarding the extent of its involvement during the early developmental stages of vertebrates. Zebrafish carries two CTPS genes, annotated as ctps1a and ctps1b. Phylogenetic analyses show that both genes had diverged from homologues in the ancestral Actinopterygii, Oreochromis niloticus. Conservation of common CTPS-catalytic regions further establishes that both proteins are likely to be functionally similar to hsaCTPS. Here, we show that ctps1a is more critical throughout the initial period of embryonic development than ctps1b. The effects of concurrent partial knockdown are dependent on ctps1a vs ctps1b dosage ratios. When these are equally attenuated, abnormal phenotypes acquired prior to the pharyngula period disappear in hatchlings (48hpf); however, if either gene is more attenuated than the other, these only become more pronounced in advanced stages. Generally, disruption to normal ctps1a or ctps1b expression levels by morpholinos culminates in the distortion of the early spinal column as well as multiple-tissue oedema. Other effects include slower growth rates, increased mortality rates and impaired structural formation of the young fish's extremities. Embryos grown in DON, a glutamine-analogue drug and CTPS antagonist, also exhibit similar characteristics, thus strengthening the validity of the morpholino-induced phenotypes observed. Together, our results demonstrate the importance of CTPS for the development of zebrafish embryos, as well as a disparity in activity and overall importance amongst isozymes.
    Matched MeSH terms: Isoenzymes/genetics
  11. Gan SH, Ismail R, Wan Adnan WA, Wan Z
    Clin Chim Acta, 2003 Mar;329(1-2):61-8.
    PMID: 12589966 DOI: 10.1016/s0009-8981(03)00019-6
    BACKGROUND: Hair roots provide a useful alternative to blood as a source of DNA for genotyping. Besides simple and non-invasive collections, the DNA extraction step is also easy to perform and is fast. The aim of our study is to determine if hair roots can be used to genotype all of the common CYP2D6 alleles for routine screening purposes.

    METHOD: The study complies with the Declaration of Helsinki. After obtaining informed consents, both blood and hair samples were collected from 92 patients for genotyping of the CYP2D6 gene. PCR was used to detect the following mutations: CYP2D6*1, *3, *4, *5, *9, *10, *17 and duplication gene. The results were compared where hair roots and blood were used as templates for DNA respectively.

    RESULTS: When blood was used as a source of DNA for genotyping, all of the investigated CYP2D6 alleles were successfully amplified. However, with hair roots, the genes with the larger fragment sizes: CYP2D6*5 and the duplication gene could not be amplified and the bands of other alleles investigated were faint when visualized under UV light.

    CONCLUSIONS: DNA extraction from hair roots and leucocytes yielded similar results but the DNA extracted from hair roots did not allow successful amplification of the longer genes such as the CYP2D6*5 and the duplication gene.
    Matched MeSH terms: Isoenzymes/genetics
  12. Greer GJ, Ow-Yang CK, Yong HS
    J Parasitol, 1988 Jun;74(3):471-80.
    PMID: 3379527
    Schistosoma malayensis n. sp., a member of the Schistosoma japonicum complex is described from Rattus muelleri in Peninsular Malaysia and 2 strains are characterized. The only morphological differences noted among adults from natural hosts were that S. malayensis are in general smaller than S. mekongi and S. japonicum. But these differences may be the result of host-induced variations and therefore are of little taxonomic value. To minimize the effects of host-induced variations, adult worms recovered from laboratory mice with similar worm burdens at 50-56 days postinfection were compared. These comparisons revealed only minor morphometric differences among these 3 species. Schistosoma malayensis eggs from naturally and experimentally infected hosts are most similar to those of S. mekongi, with eggs of both species being, in general, smaller than those of S. japonicum. The egg index for S. malayensis is usually higher than for S. japonicum and lower than for S. mekongi. Differences were noted in the developmental rates in mice for 2 isolates of S. malayensis, S. mekongi, and S. japonicum (Philippine strain), but relatively large differences observed between isolates of S. malayensis indicate that, in this case, the developmental rate is not a useful taxonomic character. Schistosoma malayensis is erected principally on the basis of differences, reported elsewhere, in the life histories and in the electrophoretic migration patterns of isoenzymes of adult worms as compared to S. mekongi and S. japonicum. These comparisons indicate that S. malayensis is more closely related to S. mekongi than to S. japonicum.
    Matched MeSH terms: Isoenzymes/genetics
  13. Hoque MA, Islam MS, Islam MN, Kato T, Nishino N, Ito A, et al.
    Amino Acids, 2014 Oct;46(10):2435-44.
    PMID: 25048030 DOI: 10.1007/s00726-014-1800-5
    Inhibitors of histone deacetylases (HDACs) are a promising class of anticancer agents that have an effect on gene regulation. The naturally occurring cyclic depsipeptide FK228 containing disulfide and Largazole possessing thioester functionalities act as pro-drugs and share the same HDAC inhibition mechanism in cell. Inspired from these facts, we have reported bicyclic tetrapeptide disulfide HDAC inhibitors resembling FK228 with potent activity and enhanced selectivity. In the present study, we report the design and synthesis of several mono and bicyclic tetrapeptide thioester HDAC inhibitors that share the inhibition mechanism similar to Largazole. Most of the compounds showed HDAC1 and HDAC4 inhibition and p21 promoting activity in nanomolar ranges. Among these the monocyclic peptides 1, 2 and bicyclic peptide, 4 are notable demanding more advanced research to be promising anticancer drug candidates.
    Matched MeSH terms: Isoenzymes/genetics
  14. Islam MM, Khan MM, Tjong DH, Alam MS, Sumida M
    Zoolog Sci, 2008 Mar;25(3):261-72.
    PMID: 18393563 DOI: 10.2108/zsj.25.261
    The present study was conducted to elucidate the genetic divergence and the phylogenetic relationships in the F. limnocharis complex from Bangladesh and other Asian countries such as Sri Lanka, Thailand, Malaysia, Taiwan and Japan by allozyme analyses. We used a total of 95 frogs of the F. limnocharis complex from these countries and F. cancrivora from the Philippines as an outgroup. Based on body size, the F. limnocharis complex from Bangladesh was divided into three distinct groups: large, medium and small types. Allozyme analyses were carried out with 28 loci encoding 20 enzymes and two blood proteins by horizontal starch-gel electrophoresis. When genetic distance was calculated, distinct divergence was found among the three types: mean genetic distance was 0.782 between the small and medium types, 1.458 between the large and medium types, and 1.520 between the large and small types. Phylogenetic trees based on genetic distance showed that all populations of Bangladesh small type strongly formed a cluster and were found to be most closely related to the Sri Lanka population; that all populations of Bangladesh large type formed a very strong cluster and were grouped with several populations from Thailand, Malaysia, Japan, and Taiwan; and that the medium type was segregated from all other groups. This may imply that each of the three types is a different species, and that the medium type is possibly an undescribed taxon.
    Matched MeSH terms: Isoenzymes/genetics*
  15. Kurniawan N, Islam MM, Djong TH, Igawa T, Daicus MB, Yong HS, et al.
    Zoolog Sci, 2010 Mar;27(3):222-33.
    PMID: 20192690 DOI: 10.2108/zsj.27.222
    To elucidate genetic divergence and evolutionary relationship in Fejervarya cancrivora from Indonesia and other Asian countries, allozyme and molecular analyses were carried out using 131 frogs collected from 24 populations in Indonesia, Thailand, Bangladesh, Malaysia, and the Philippines. In the allozymic survey, seventeen enzymatic loci were examined for 92 frogs from eight representative localities. The results showed that F. cancrivora is subdivided into two main groups, the mangrove type and the large- plus Pelabuhan ratu types. The average Nel's genetic distance between the two groups was 0.535. Molecular phylogenetic trees based on nucleotide sequences of the 16S rRNA and Cyt b genes and constructed with the ML, MP, NJ, and BI methods also showed that the individuals of F. cancrivora analyzed comprised two clades, the mangrove type and the large plus Pelabuhan ratu / Sulawesi types, the latter further split into two subclades, the large type and the Pelabuhan ratu / Sulawesi type. The geographical distribution of individuals of the three F. cancrivora types was examined. Ten Individuals from Bangladesh, Thailand, and the Philippines represented the mangrove type; 34 Individuals from Malaysia and Indonesia represented the large type; and 11 individuals from Indonesia represented the Pelabuhan ratu / Sulawesi type. Average sequence divergences among the three types were 5.78-10.22% for the 16S and 12.88-16.38% for Cyt b. Our results suggest that each of the three types can be regarded as a distinct species.
    Matched MeSH terms: Isoenzymes/genetics
  16. Latif MA, Omar MY, Tan SG, Siraj SS, Ismail AR
    Biochem Genet, 2010 Apr;48(3-4):266-86.
    PMID: 19967400 DOI: 10.1007/s10528-009-9316-5
    Studies on hybridization, inheritance, and population genetics of brown planthoppers that infest rice and weeds were undertaken using starch gel electrophoresis to determine whether the weed-infesting population represents a biological race or a species. F(1) and F(2) generations were produced by crosses between parental insects from the two populations with little indication of hybrid sterility. Gpi, Mdh, and Idh loci were inherited in a simple Mendelian fashion in families of two sympatric populations. Sixteen populations of Nilaparvata spp. from eight locations were collected. The Mdh, Idh, Pgm, Gpi, 6Pgd, and Acp loci were polymorphic. The N. lugens of rice with high esterase activity were clustered into a group and characterized by the presence of alleles Gpi (110) and Gpi (120), whereas N. lugens from weeds with low esterase activity were clustered into another group and characterized by Gpi (100) and Gpi (90) . There was a lack of heterozygotes between the common alleles of the two populations. This means that the two groups of individuals belong to different gene pools.
    Matched MeSH terms: Isoenzymes/genetics
  17. Lee EJ, Wong JY, Yeoh PN, Gong NH
    Pharmacogenetics, 1995 Oct;5(5):332-4.
    PMID: 8563775
    Glutathione S-transferase-theta (GSTT1) is subject to a genetic polymorphism where approximately 50% of a Caucasian population are homozygous for the null allele. Because of the possible association of the polymorphism with increased cancer risk in individuals, we genotyped by polymerase chain reaction 187 normal Chinese, 167 normal Malays and 152 normal Indians from Singapore and Malaysia. The proportion of Chinese, Malays and Indians with the null genotype were 58%, 38% and 16% respectively and mirrored previously reported frequencies of the GSTM1 null genotype in these populations. The frequency of the combined GSTM1 and GSTT1 null genotypes among Chinese, Malays and Indians were 37%, 22% and 5% respectively. The similarity with predicted frequencies indicated no interaction between the two genetic polymorphisms.
    Matched MeSH terms: Isoenzymes/genetics*
  18. Malagobadan S, Ho CS, Nagoor NH
    Cancer Biol Med, 2020 Feb 15;17(1):101-111.
    PMID: 32296579 DOI: 10.20892/j.issn.2095-3941.2019.0010
    Objective: Anoikis is apoptosis that is induced when cells detach from the extracellular matrix and neighboring cells. As anoikis serves as a regulatory barrier, cancer cells often acquire resistance towards anoikis during tumorigenesis to become metastatic. MicroRNAs (miRNAs) are short strand RNA molecules that regulate genes post-transcriptionally by binding to mRNAs and reducing the expression of its target genes. This study aimed to elucidate the role of a novel miRNA, miR-6744-5p, in regulating anoikis in breast cancer and identify its target gene. Methods: An anoikis resistant variant of the luminal A type breast cancer MCF-7 cell line (MCF-7-AR) was generated by selecting and amplifying surviving cells after repeated exposure to growth in suspension. MiRNA microarray analysis identified a list of dysregulated miRNAs from which miR-6744-5p was chosen for overexpression and knockdown studies in MCF-7. Additionally, the miRNA was also overexpressed in a triple-negative breast cancer cell line, MDA-MB-231, to evaluate its ability to impair the metastatic potential of breast cancer cells. Results: This study showed that overexpression and knockdown of miR-6744-5p in MCF-7 increased and decreased anoikis sensitivity, respectively. Similarly, overexpression of miR-6744-5p in MDA-MB-231 increased anoikis and also decreased tumor cell invasion in vitro and in vivo. Furthermore, NAT1 enzyme was identified and validated as the direct target of miR-6744-5p. Conclusions: This study has proven the ability of miR-6744-5p to increase anoikis sensitivity in both luminal A and triple negative breast cancer cell lines, highlighting its therapeutic potential in treating breast cancer.
    Matched MeSH terms: Isoenzymes/genetics*
  19. Ng CH, Lee SL, Ng KK, Muhammad N, Ratnam W
    J Genet, 2009 Apr;88(1):25-31.
    PMID: 19417541
    The mating system and seed variation of Acacia hybrid (A. mangium x A. auriculiformis) were studied using allozymes and random amplified polymorphic DNA (RAPD) markers, respectively. Multi-locus outcrossing rate estimations indicated that the hybrid was predominantly outcrossed (mean+/- s.e. t(m) = 0.86+/-0.01). Seed variation was investigated using 35 polymorphic RAPD fragments. An analysis of molecular variance (AMOVA) revealed the highest genetic variation among seeds within a pod (66%-70%), followed by among pods within inflorescence (29%-37%), and the least variation among inflorescences within tree (1%). In addition, two to four RAPD profiles could be detected among seeds within pod. Therefore, the results suggest that a maximum of four seeds per pod could be sampled for the establishment of a mapping population for further studies.
    Matched MeSH terms: Isoenzymes/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links