Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Hanafin PO, Abdul Rahim N, Sharma R, Cess CG, Finley SD, Bergen PJ, et al.
    CPT Pharmacometrics Syst Pharmacol, 2023 Mar;12(3):387-400.
    PMID: 36661181 DOI: 10.1002/psp4.12923
    Carbapenemase-resistant Klebsiella pneumoniae (KP) resistant to multiple antibiotic classes necessitates optimized combination therapy. Our objective is to build a workflow leveraging omics and bacterial count data to identify antibiotic mechanisms that can be used to design and optimize combination regimens. For pharmacodynamic (PD) analysis, previously published static time-kill studies (J Antimicrob Chemother 70, 2015, 2589) were used with polymyxin B (PMB) and chloramphenicol (CHL) mono and combination therapy against three KP clinical isolates over 24 h. A mechanism-based model (MBM) was developed using time-kill data in S-ADAPT describing PMB-CHL PD activity against each isolate. Previously published results of PMB (1 mg/L continuous infusion) and CHL (Cmax : 8 mg/L; bolus q6h) mono and combination regimens were evaluated using an in vitro one-compartment dynamic infection model against a KP clinical isolate (108 CFU/ml inoculum) over 24 h to obtain bacterial samples for multi-omics analyses. The differentially expressed genes and metabolites in these bacterial samples served as input to develop a partial least squares regression (PLSR) in R that links PD responses with the multi-omics responses via a multi-omics pathway analysis. PMB efficacy was increased when combined with CHL, and the MBM described the observed PD well for all strains. The PLSR consisted of 29 omics inputs and predicted MBM PD response (R2  = 0.946). Our analysis found that CHL downregulated metabolites and genes pertinent to lipid A, hence limiting the emergence of PMB resistance. Our workflow linked insights from analysis of multi-omics data with MBM to identify biological mechanisms explaining observed PD activity in combination therapy.
    Matched MeSH terms: Klebsiella pneumoniae/genetics
  2. Nik Zuraina NMN, Mohamad S, Hasan H, Goni MD, Suraiya S
    Pathog Glob Health, 2023 Feb;117(1):63-75.
    PMID: 35331083 DOI: 10.1080/20477724.2022.2028378
    Respiratory tract infections (RTIs), including pneumonia and pulmonary tuberculosis, are among the leading causes of death worldwide. The use of accurate diagnostic tests is crucial to initiate proper treatment and therapy to reduce the mortality rates for RTIs. A PCR assay for simultaneous detection of six respiratory bacteria: Haemophilus influenzae, Klebsiella pneumoniae, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae, was developed in our lab. The current study aimed to evaluate the performance of this assay along with the retrospective surveillance of respiratory pathogens at a teaching hospital in Kelantan, Malaysia. Leftover sputa (n = 200) from clinical laboratories were collected and undergone DNA template preparation for PCR analysis. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the PCR assay were determined in comparison with the gold standard sputum culture. Overall, the accuracy performance of this assay was 94.67% (95% CI: 90.87% to 97.21%) with sensitivity, specificity, PPV and NPV of 100%, 91.67%, 87.1% and 100%, respectively. Based on the organisms detected from sputa, K. pneumoniae ranked as the top isolate (n = 48), followed by P. aeruginosa (n = 13) and H. influenzae (n = 10). Surveillance among the patients showed that the associations of bacterial positive with gender and means of acquisition were found significant (p values = 0.049 and 0.001, respectively). Besides the promising performance of this ready-to-use molecular-based assay for the rapid detection of selected bacteria pathogens, this study also highlighted significant spread of K. pneumoniae RTIs in the community.
    Matched MeSH terms: Klebsiella pneumoniae/genetics
  3. Yap PS, Cheng WH, Chang SK, Lim SE, Lai KS
    Cells, 2022 Sep 26;11(19).
    PMID: 36230959 DOI: 10.3390/cells11192995
    There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
    Matched MeSH terms: Klebsiella pneumoniae/genetics
  4. Kong ZX, Karunakaran R, Abdul Jabar K, Ponnampalavanar S, Chong CW, Teh CSJ
    Microb Drug Resist, 2021 Oct;27(10):1319-1327.
    PMID: 33877888 DOI: 10.1089/mdr.2020.0096
    Background: Hypermucoviscous carbapenem-resistant Klebsiella pneumoniae (hmCRKp) is emerging globally and approaching the worst-case scenario in health care system. Aims: The main objective in this study was to determine the hypermucoviscous characteristics among the carbapenem-resistant K. pneumoniae (CRKp) isolated from a teaching hospital in Malaysia. The association of hypermucoviscous phenotype with the virulence traits and clinical presentations were also investigated. Methods: A retrospective study was conducted in University Malaya Medical Centre (UMMC). The presence of hypermucoviscous K. pneumoniae was identified among a collection of CRKp clinical isolates (first isolate per patient) from 2014 to 2015 using string test. Correlation between clinical and microbial characteristics of the hmCRKp was investigated. Results: A total of nine (7.5%) hmCRKp were detected among 120 CRKp isolates. Majority of the isolates were hospital acquired or health care-associated infections. None of the patients had typical pyogenic liver abscess. All of the hmCRKp isolates harbored carbapenemase genes and were multidrug resistant. K1/K serotype, peg-344, allS, and magA were not identified among hmCRKp isolates, whereas aerobactin siderophore receptor gene (iutA), iroB, rmpA, and rmpA2 were detected. Only three hmCRKp isolates were resistant to serum bactericidal. Conclusions: All the isolates presented inconclusive evidence for the interpretation of hypervirulence. Therefore, more study should be performed in the future to have a better understanding of the virulence mechanisms in correlation with the clinical and microbial determinants.
    Matched MeSH terms: Klebsiella pneumoniae/genetics*
  5. Mobasseri G, Thong KL, Teh CSJ
    Int Microbiol, 2021 May;24(2):243-250.
    PMID: 33469786 DOI: 10.1007/s10123-021-00161-5
    Extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae has been associated with a wide range of infections in humans and animals. The objective of this study was to determine the genomic characteristics of two multiple drug resistant, ESBLs-producing K. pneumoniae strains isolated from a swine in 2013 (KP2013Z28) and a hospitalized patient in 2014 (KP2014C46) in Malaysia. Genomic analyses of the two K. pneumoniae strains indicated the presence of various antimicrobial resistance genes associated with resistance to β-lactams, aminoglycosides, colistin, fluoroquinolones, phenicols, tetracycline, sulfonamides, and trimethoprim, corresponding to the antimicrobial susceptibility profiles of the strains. KP2013Z28 (ST25) and KP2014C46 (ST929) harbored 5 and 2 genomic plasmids, respectively. The phylogenomics of these two Malaysian K. pneumoniae, with other 19 strains around the world was determined based on SNPs analysis. Overall, the strains were resolved into five clusters that comprised of strains with different resistance determinants. This study provided a better understanding of the resistance mechanisms and phylogenetic relatedness of the Malaysian strains with 19 strains isolated worldwide. This study also highlighted the needs to monitor the usage of antibiotics in hospital settings, animal husbandry, and agricultural practices due to the increase of β-lactam, aminoglycosides, tetracycline, and colistin resistance among pathogenic bacteria for better infection control.
    Matched MeSH terms: Klebsiella pneumoniae/genetics*
  6. Lau MY, Ponnampalavanar S, Lee WS, Jabar KA, Chua KH, Idris N, et al.
    J Infect Chemother, 2020 Oct;26(10):1058-1061.
    PMID: 32546330 DOI: 10.1016/j.jiac.2020.05.009
    The emergence of carbapenemase-producing Enterobacteriaceae has become a major global concern. OXA-48-like carbapenemase gene and its variants have been increasingly reported worldwide. This study reported the first OXA-181-producing Klebsiella quasipneumoniae isolate in Malaysia. This bacterium was isolated from blood specimen of a three-year-old boy with Alagille syndrome who had liver biopsy on October 2016. He had undergone liver transplant in India ten months previously. The genotypic and phenotypic characteristics of the strain were elucidated in this study. To our best knowledge, this is the first report of OXA-181-producing K. quasipneumoniae in Malaysia.
    Matched MeSH terms: Klebsiella pneumoniae/genetics
  7. Yap PSX, Ahmad Kamar A, Chong CW, Ngoi ST, Teh CSJ
    Microb Drug Resist, 2020 Mar;26(3):190-203.
    PMID: 31545116 DOI: 10.1089/mdr.2019.0199
    Background:
    Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life.
    Materials and Methods:
    In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates.
    Results:
    The strains harbored blaSHV-27, blaSHV-71, and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance.
    Conclusion:
    The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation.
    Matched MeSH terms: Klebsiella pneumoniae/genetics*
  8. Mobasseri G, Thong KL, Rajasekaram G, Teh CSJ
    Braz J Microbiol, 2020 Mar;51(1):189-195.
    PMID: 31838661 DOI: 10.1007/s42770-019-00208-w
    Multidrug-resistant (MDR) and extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae associated with nosocomial infections have caused serious problems in antibiotic management with limited therapeutic choices. This study aimed to determine the genotypic and phenotypic characteristics of K. pneumoniae strains isolated from a tertiary hospital in Malaysia. Ninety-seven clinical K. pneumoniae strains were analyzed for antimicrobial susceptibility, all of which were sensitive to amikacin and colistin (except one strain), while 31.9 % and 27.8 % were MDR and ESBL producers, respectively. PCR and DNA sequencing of the amplicons indicated that the majority of MDR strains (26/27) were positive for blaTEM, followed by blaSHV (24/27), blaCTX-M-1 group (23/27), blaCTX-M-9 group (2/27), and mcr-1 (1/27). Thirty-seven strains were hypervirulent and PCR detection of virulence genes showed 38.1 %, 22.7 %, and 16.5 % of the strains were positive for K1, wabG, and uge genes, respectively. Genotyping by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) showed that these strains were genetically diverse and heterogeneous. Sequence types, ST23, ST22, and ST412 were the predominant genotypes. This is the first report of colistin-resistant K. pneumoniae among clinical strains associated with mcr-1 plasmid in Malaysia. The findings in this study have contributed to the effort in combating the increase in antimicrobial resistance by providing better understanding of genotypic characteristics and resistance mechanisms of the organisms.
    Matched MeSH terms: Klebsiella pneumoniae/genetics
  9. Mobasseri G, Teh CSJ, Ooi PT, Tan SC, Thong KL
    Microb Drug Resist, 2019 Sep;25(7):1087-1098.
    PMID: 30844323 DOI: 10.1089/mdr.2018.0184
    Aims:
    The high prevalence of multidrug resistance (MDR) and extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae associated with nosocomial infections has caused serious therapeutic challenges. The objectives of this study were to determine the genotypic and phenotypic characteristics of K. pneumoniae strains isolated from Malaysian swine farms and the transferability of ESBL genes by plasmids.
    Results:
    A total of 50 K. pneumoniae strains were isolated from 389 samples, which were collected from healthy and unhealthy pigs (swine rectum and oral cavities), healthy farmers (human rectum, urine, and nasal cavities), farm's environment, and animal feeds from seven Malaysian swine farms. Antimicrobial susceptibility analysis of these 50 K. pneumoniae strains showed that the majority (86%) were resistant to tetracycline, while 44% and 36% of these strains were MDR and ESBL producers, respectively. PCR and DNA sequencing of the amplicons showed the occurrence of blaTEM (15/18), blaSHV (15/18), blaCTX-M-1 group (7/18), and blaCTX-M-2 group (2/18), while only class 1 integron-encoded integrase was detected. Conjugation experiments and plasmid analysis indicated that the majority of the ESBL genes were plasmid encoded and the plasmids in 11 strains were conjugative. Genotyping by pulsed-field gel electrophoresis and repetitive extragenic palindrome-polymerase chain reaction (REP-PCR) showed that these 50 strains were genetically diverse with 44 pulsotypes and 43 REP-PCR subtypes.
    Conclusions:
    ESBL-producing K. pneumoniae strains showed high resistance to tetracycline as this antibiotic is used for prophylaxis and therapeutic purposes at the swine farms. The findings in this study have drawn attention to the issue of increasing MDR in animal husbandry and it should be taken seriously to prevent the spread and treatment failure due to antimicrobial resistance.
    Matched MeSH terms: Klebsiella pneumoniae/genetics*
  10. Kim SY, Ko KS
    Microb Drug Resist, 2019 Mar;25(2):227-232.
    PMID: 30212274 DOI: 10.1089/mdr.2018.0020
    To reveal whether an increase of CTX-M-15-producing Klebsiella pneumoniae ST11 isolates is due to clonal dissemination across the countries, plasmids (pHK02-026, pM16-13, pIN03-01, and pTH02-34) were extracted from four K. pneumoniae isolates collected in Hong Kong, Malaysia, Thailand, and Indonesia, respectively. Complete sequencing of blaCTX-M-15-carrying plasmids was performed. In addition to the four plasmids, a previously sequenced plasmid (pKP12226) of a K. pneumoniae ST11 isolate from Korea was included in the analysis. While pIN03-01 and pTH02-34, which belonged to the incompatibility group IncX3, showed nearly the same structure, the others of IncF1A or IncFII exhibited very different structures. The number and kinds of antibiotic genes found in the plasmids were also different from each other. Cryptic prophage genes were identified in all five blaCTX-M-15-harboring plasmids from the ST11 isolates; P1-like region in pKP12226, CPZ-55 prophage region in pHK02-026, phage shock operon pspFABCD in pM16-13, and SPBc2 prophage yokD in pIN03-01 and pTH02-34. The plasmids with blaCTX-M-15 in the prevailing K. pneumoniae ST11 isolates in Asian countries might emerge from diverse origins by recombination. The prevalence of CTX-M-15-producing K. pneumoniae ST11 clone in Asian countries is not mainly due to the dissemination of a single strain.
    Matched MeSH terms: Klebsiella pneumoniae/genetics*
  11. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Avison MB
    J Antimicrob Chemother, 2018 11 01;73(11):2990-2996.
    PMID: 30053019 DOI: 10.1093/jac/dky293
    Background: In Klebsiella pneumoniae, loss-of-function mutations in the transcriptional repressors RamR and OqxR both have an impact on the production of efflux pumps and porins relevant to antimicrobial efflux/entry.

    Objectives: To define, in an otherwise isogenic background, the relative effects of OqxR and RamR loss-of-function mutations on envelope protein production, envelope permeability and antimicrobial susceptibility. We also investigated the clinical relevance of an OqxR loss-of-function mutation, particularly in the context of β-lactam susceptibility.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. Antimicrobial susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and quantitative RT-PCR was used to measure transcript levels.

    Results: Loss of RamR or OqxR reduced envelope permeability in K. pneumoniae by 45%-55% relative to the WT. RamR loss activated AcrAB efflux pump production ∼5-fold and this reduced β-lactam susceptibility, conferring ertapenem non-susceptibility even in the absence of a carbapenemase. In contrast, OqxR loss specifically activated OqxAB efflux pump production >10 000-fold. This reduced fluoroquinolone susceptibility but had little impact on β-lactam susceptibility even in the presence of a β-lactamase.

    Conclusions: Whilst OqxR loss and RamR loss are both seen in K. pneumoniae clinical isolates, only RamR loss significantly stimulates AcrAB efflux pump production. This means that only RamR mutants have significantly reduced β-lactamase-mediated β-lactam susceptibility and therefore represent a greater clinical threat.

    Matched MeSH terms: Klebsiella pneumoniae/genetics*
  12. Low YM, Chong CW, Yap IKS, Chai LC, Clarke SC, Ponnampalavanar S, et al.
    Pathog Glob Health, 2018 10;112(7):378-386.
    PMID: 30380366 DOI: 10.1080/20477724.2018.1538281
    The increasing prevalence of antibiotic resistant pathogens poses a serious threat to global health. However, less emphasis has been placed to co-relate the gene expression and metabolism of antibiotic resistant pathogens. This study aims to elucidate gene expression and variations in metabolism of multidrug resistant Klebsiella pneumoniae after exposure to antibiotics. Phenotypic responses of three genotypically distinct carbapenem resistant Klebsiella pneumoniae (CRKP) strains untreated and treated with sub-lethal concentrations of imipenem were investigated via phenotype microarrays (PM). The gene expression and metabolism of the strain harboring blaNDM-1 before and after exposure to sub-lethal concentration of imipenem were further investigated by RNA-sequencing (RNA-Seq) and 1H NMR spectroscopy respectively. Most genes related to cell division, central carbon metabolism and nucleotide metabolism were downregulated after imipenem treatment. Similarly, 1H NMR spectra obtained from treated CRKP showed decrease in levels of bacterial end products (acetate, pyruvate, succinate, formate) and metabolites involved in nucleotide metabolism (uracil, xanthine, hypoxanthine) but elevated levels of glycerophosphocholine. The presence of anserine was also observed for the treated CRKP while FAPγ-adenine and methyladenine were only present in untreated bacterial cells. As a conclusion, the studied CRKP strain exhibited decrease in central carbon metabolism, cell division and nucleotide metabolism after exposure to sub-lethal concentrations of imipenem. The understanding of the complex biological system of this multidrug resistant bacterium may help in the development of novel strategies and potential targets for the management of the infections.
    Matched MeSH terms: Klebsiella pneumoniae/genetics
  13. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Jiménez-Castellanos JC, Zhang J, et al.
    PMID: 29263066 DOI: 10.1128/AAC.01814-17
    Fluoroquinolone resistance in Gram-negative bacteria is multifactorial, involving target site mutations, reductions in fluoroquinolone entry due to reduced porin production, increased fluoroquinolone efflux, enzymes that modify fluoroquinolones, and Qnr, a DNA mimic that protects the drug target from fluoroquinolone binding. Here we report a comprehensive analysis, using transformation and in vitro mutant selection, of the relative importance of each of these mechanisms for fluoroquinolone nonsusceptibility using Klebsiella pneumoniae as a model system. Our improved biological understanding was then used to generate 47 rules that can predict fluoroquinolone susceptibility in K. pneumoniae clinical isolates. Key to the success of this predictive process was the use of liquid chromatography-tandem mass spectrometry to measure the abundance of proteins in extracts of cultured bacteria, identifying which sequence variants seen in the whole-genome sequence data were functionally important in the context of fluoroquinolone susceptibility.
    Matched MeSH terms: Klebsiella pneumoniae/genetics
  14. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Schneiders T, Heesom KJ, et al.
    J Antimicrob Chemother, 2018 Jan 01;73(1):88-94.
    PMID: 29029194 DOI: 10.1093/jac/dkx345
    Objectives: In Klebsiella pneumoniae, overproduction of RamA results in reduced envelope permeability and reduced antimicrobial susceptibility but clinically relevant resistance is rarely observed. Here we have tested whether RamA overproduction can enhance acquired β-lactam resistance mechanisms in K. pneumoniae and have defined the envelope protein abundance changes upon RamA overproduction during growth in low and high osmolarity media.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. β-Lactam susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and transcript levels were quantified using real-time RT-PCR.

    Results: RamA overproduction enhanced β-lactamase-mediated β-lactam resistance, in some cases dramatically, without altering β-lactamase production. It increased production of efflux pumps and decreased OmpK35 porin production, though micF overexpression showed that OmpK35 reduction has little impact on envelope permeability. A survey of K. pneumoniae bloodstream isolates revealed ramA hyperexpression in 3 of 4 carbapenemase producers, 1 of 21 CTX-M producers and 2 of 19 strains not carrying CTX-M or carbapenemases.

    Conclusions: Whilst RamA is not a key mediator of antibiotic resistance in K. pneumoniae on its own, it is potentially important for enhancing the spectrum of acquired β-lactamase-mediated β-lactam resistance. LC-MS/MS proteomics analysis has revealed that this enhancement is achieved predominantly through activation of efflux pump production.

    Matched MeSH terms: Klebsiella pneumoniae/genetics
  15. Jiménez-Castellanos JC, Wan Ahmad Kamil WN, Cheung CH, Tobin MS, Brown J, Isaac SG, et al.
    J Antimicrob Chemother, 2016 Jul;71(7):1820-5.
    PMID: 27029850 DOI: 10.1093/jac/dkw088
    OBJECTIVES: In Klebsiella pneumoniae, overproduction of RamA and RarA leads to increased MICs of various antibiotics; MarA and SoxS are predicted to perform a similar function. We have compared the relative effects of overproducing these four AraC-type regulators on envelope permeability (a combination of outer membrane permeability and efflux), efflux pump and porin production, and antibiotic susceptibility in K. pneumoniae.

    METHODS: Regulators were overproduced using a pBAD expression vector. Antibiotic susceptibility was measured using disc testing. Envelope permeability was estimated using a fluorescent dye accumulation assay. Porin and efflux pump production was quantified using proteomics and validated using real-time quantitative RT-PCR.

    RESULTS: Envelope permeability and antibiotic disc inhibition zone diameters both reduced during overproduction of RamA and to a lesser extent RarA or SoxS, but did not change following overproduction of MarA. These effects were associated with overproduction of the efflux pumps AcrAB (for RamA and SoxS) and OqxAB (for RamA and RarA) and the outer membrane protein TolC (for all regulators). Effects on porin production were strain specific.

    CONCLUSIONS: RamA is the most potent regulator of antibiotic permeability in K. pneumoniae, followed by RarA then SoxS, with MarA having very little effect. This observed relative potency correlates well with the frequency at which these regulators are reportedly overproduced in clinical isolates.

    Matched MeSH terms: Klebsiella pneumoniae/genetics*
  16. Hamzan NI, Yean CY, Rahman RA, Hasan H, Rahman ZA
    Emerg Health Threats J, 2015;8:26011.
    PMID: 25765342 DOI: 10.3402/ehtj.v8.26011
    Background : Antibiotic resistance among Enterobacteriaceae posts a great challenge to the health care service. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is attracting significant attention due to its rapid and global dissemination. The infection is associated with significant morbidity and mortality, thus creating challenges for infection control and managing teams to curb the infection. In Southeast Asia, there have been limited reports and subsequent research regarding CRKP infections. Thus, the study was conducted to characterize CRKP that has been isolated in our setting. Methods : A total of 321 K. pneumoniae were included in the study. Each isolate went through an identification process using an automated identification system. Phenotypic characterization was determined using disk diffusion, modified Hodge test, Epsilometer test, and inhibitor combined disk test. Further detection of carbapenemase genes was carried out using polymerase chain reaction and confirmed by gene sequence analysis. Results : All together, 13 isolates (4.05%) were CRKP and the majority of them were resistant to tested antibiotics except colistin and tigercycline. Among seven different carbapenemase genes studied (blaKPC, bla IMP, bla SME, bla NDM, bla IMI, bla VIM, and bla OXA), only two, bla IMP4 (1.87%) and bla NDM1 (2.18%), were detected in our setting. Conclusion : Evidence suggests that the prevalence of CRKP in our setting is low, and knowledge of Carbapenem-resistant Enterobacteriaceae and CRKP has improved and become available among clinicians.
    Matched MeSH terms: Klebsiella pneumoniae/genetics
  17. Al-Marzooq F, Mohd Yusof MY, Tay ST
    PLoS One, 2015;10(7):e0133654.
    PMID: 26203651 DOI: 10.1371/journal.pone.0133654
    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6')-Ib, aac(6')-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings.
    Matched MeSH terms: Klebsiella pneumoniae/genetics
  18. Al-Marzooq F, Mohd Yusof MY, Tay ST
    Biomed Res Int, 2014;2014:601630.
    PMID: 24860827 DOI: 10.1155/2014/601630
    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.
    Matched MeSH terms: Klebsiella pneumoniae/genetics*
  19. Saiful Anuar AS, Mohd Yusof MY, Tay ST
    Eur Rev Med Pharmacol Sci, 2013 Jul;17(13):1744-7.
    PMID: 23852897
    The ciprofloxacin resistance of Klebsiella (K.) pneumoniae is mediated primarily through alterations in type II topoisomerase (gyrA) gene and plasmid-mediated quinolone resistance-conferring genes (qnr). This study aimed to define the prevalence of plasmid-mediated quinolone resistance-conferring genes (qnr) and type II topoisomerase (gyrA) alterations of a population of ciprofloxacin-resistant (n = 21), intermediate (n = 8), and sensitive (n = 18) K. pneumoniae isolates obtained from a teaching hospital at Kuala Lumpur, Malaysia.
    Matched MeSH terms: Klebsiella pneumoniae/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links