Displaying all 15 publications

Abstract:
Sort:
  1. Jessop TS, Ariefiandy A, Purwandana D, Ciofi C, Imansyah J, Benu YJ, et al.
    Proc Biol Sci, 2018 11 14;285(1891).
    PMID: 30429305 DOI: 10.1098/rspb.2018.1829
    Loss of dispersal typifies island biotas, but the selective processes driving this phenomenon remain contentious. This is because selection via, both indirect (e.g. relaxed selection or island syndromes) and direct (e.g. natural selection or spatial sorting) processes may be involved, and no study has yet convincingly distinguished between these alternatives. Here, we combined observational and experimental analyses of an island lizard, the Komodo dragon (Varanus komodoensis, the world's largest lizard), to provide evidence for the actions of multiple processes that could contribute to island dispersal loss. In the Komodo dragon, concordant results from telemetry, simulations, experimental translocations, mark-recapture, and gene flow studies indicated that despite impressive physical and sensory capabilities for long-distance movement, Komodo dragons exhibited near complete dispersal restriction: individuals rarely moved beyond the valleys they were born/captured in. Importantly, lizard site-fidelity was insensitive to common agents of dispersal evolution (i.e. indices of risk for inbreeding, kin and intraspecific competition, and low habitat quality) that consequently reduced survival of resident individuals. We suggest that direct selection restricts movement capacity (e.g. via benefits of spatial philopatry and increased costs of dispersal) alongside use of dispersal-compensating traits (e.g. intraspecific niche partitioning) to constrain dispersal in island species.
    Matched MeSH terms: Lizards/genetics
  2. Poyarkov NA, Geissler P, Gorin VA, Dunayev EA, Hartmann T, Suwannapoom C
    Zool Res, 2019 Sep 18;40(5):358-393.
    PMID: 31502426 DOI: 10.24272/j.issn.2095-8137.2019.052
    We provide an integrative taxonomic analysis of the Lipinia vittigera species complex from mainland Southeast Asia. Based on examination of external morphology, color pattern, and 681 base pairs of the cytochrome oxidase subunit I (COI) mitochondrial gene, we demonstrate the presence of four morphologically distinct lineages of Lipinia in Vietnam, Cambodia, Thailand, and Malaysia, showing a sequence divergence ranging 15.5%-20.4%. All discovered lineages are discretely diagnosable from one another by a combination of scalation traits and color patterns. A review of the published distribution data and a re-examination of available type material revealed the following results:(1) distribution of L. vittigera (Boulenger, 1894) sensu stricto is restricted to Sundaland and the Thai-Malay Peninsula south of the Isthmus of Kra; (2) L. microcercus (Boettger, 1901) stat. nov. is elevated to full species rank; the species has a wide distribution from central and southern Vietnam across Cambodia to eastern Thailand; we regard Lygosoma vittigerum kronfanum Smith, 1922 and Leiolopisma pranensis Cochran, 1930 as its junior synonyms; (3) Lipinia trivittatasp. nov. occurs in hilly areas of southern Vietnam, Cambodia, and eastern Thailand; and (4) Lipinia vassilievisp. nov. is currently known only from a narrow area along the Vietnamese-Cambodian border in the foothills of the central Annamite Mountain Range. We further provide an identification key for Lipinia occurring in mainland Southeast Asia.
    Matched MeSH terms: Lizards/genetics*
  3. Grismer LL, Wood PL, Cota M
    Zootaxa, 2014;3760:67-78.
    PMID: 24870072 DOI: 10.11646/zootaxa.3760.1.4
    A new species of gekkonid, Hemiphyllodactylus chiangmaiensis sp. nov., from northwestern Thailand is separated from all other species of Hemiphyllodactylus by a set of features including: a maximum SVL of 41.2 mm; 8-12 chin scales extending transversely from unions of second and third infralabials and posterior margin of mental; lamellar formula on hand 3-3-3-3 or 3-4-3-3; lamellar formula on foot 3-3-3-3 or 3-4-4-4; continuous precloacal and femoral pores; a unique dorsal color pattern; and caecum and oviducts pigmented. These characters place this species in the speciose H. typus group. Hemiphyllodactylus chiangmaiensis sp. nov. fills a biogeographical hiatus in the distribution of this genus across northern Indochina.
    Matched MeSH terms: Lizards/genetics
  4. Grismer LL, Wood PL, Mohamed M, Chan KO, Heinz HM, Sumarli AS, et al.
    Zootaxa, 2013;3746:463-72.
    PMID: 25113489 DOI: 10.11646/zootaxa.3746.3.5
    A new species of karst-adapted gekkonid lizard of the genus Cnemaspis Strauch is described from Gua Gunting and Gua Goyang in a karst region of Merapoh, Pahang, Peninsular Malaysia whose unique limestone formations are in immediate danger of being quarried. The new species differs from all other species of Cnemaspis based on its unique suite of morphological and color pattern characters. Its discovery underscores the unique biodiversity endemic to karst regions and adds to a growing list of karst-adapted reptiles from Peninsular Malaysia. We posit that new karst-adapted species endemic to limestone forests will continue to be discovered and these regions will harbor a significant percentage of Peninsular Malaysia's biodiversity and thusly should be conserved rather than quarried.
    Matched MeSH terms: Lizards/genetics
  5. Keating SE, Blumer M, Grismer LL, Lin A, Nielsen SV, Thura MK, et al.
    Genes (Basel), 2021 01 19;12(1).
    PMID: 33477871 DOI: 10.3390/genes12010116
    Lizards and snakes (squamates) are known for their varied sex determining systems, and gecko lizards are especially diverse, having evolved sex chromosomes independently multiple times. While sex chromosomes frequently turnover among gecko genera, intrageneric turnovers are known only from Gekko and Hemidactylus. Here, we used RADseq to identify sex-specific markers in two species of Burmese bent-toed geckos. We uncovered XX/XY sex chromosomes in Cyrtodactylus chaunghanakwaensis and ZZ/ZW sex chromosomes in Cyrtodactylus pharbaungensis. This is the third instance of intrageneric turnover of sex chromosomes in geckos. Additionally, Cyrtodactylus are closely related to another genus with intrageneric turnover, Hemidactylus. Together, these data suggest that sex chromosome turnover may be common in this clade, setting them apart as exceptionally diverse in a group already known for diverse sex determination systems.
    Matched MeSH terms: Lizards/genetics*
  6. Grismer LL, Wood PL, Syafiq MF, Badli-Sham BH, Rizal SA, Ahmad AB, et al.
    Zootaxa, 2016 Aug 02;4147(1):59-66.
    PMID: 27515603 DOI: 10.11646/zootaxa.4147.1.3
    An integrative taxonomic analysis based on additional specimens and color photographs of Lipinia sekayuensis and additional color photographs of L. surda from Pulau Tioman and the Gunung Panti Forest Reserve, Peninsular Malaysia confirm the previous hypotheses that L. sekayuensis is a valid species and is the sister species of L. surda. The two species share a 12.8% sequence divergence between them.
    Matched MeSH terms: Lizards/genetics
  7. Grismer LL, Wood PL, Aowphol A, Cota M, Murdoch ML, Aguilar C, et al.
    Zootaxa, 2016 Mar 16;4092(3):414-20.
    PMID: 27394463 DOI: 10.11646/zootaxa.4092.3.6
    An integrative taxonomic analysis used to identify a new population of Bronchocela from Phuket Island, Thailand indicates it is conspecific with B. rayaensis from the Langkawi Archipelago of northwestern Peninsular Malaysia. An additional specimen photographed from Khura Buri District, Phang-nga Province is also considered to be B. rayaensis and represents a northern range extension of 295 km from the Langkawi Archipelago.
    Matched MeSH terms: Lizards/genetics*
  8. Grismer LL, Muin MA, Wood PL, Anuar S, Linkem CW
    Zootaxa, 2016 Mar 15;4092(2):231-42.
    PMID: 27394452 DOI: 10.11646/zootaxa.4092.2.6
    Phylogenetic analyses based on the mitochondrial gene ND2 and its flanking tRNAs indicate the diminutive upland and insular species Sphenomorphus bukitensis, S. butleri, S. langkawiensis, S. perhentianensis, and S. temengorensis form a monophyletic group that is phylogenetically embedded within the Southeast Asian genus Tytthoscincus. The analyses also indicate that a new swamp-dwelling skink from the Bukit Panchor State Park, Pulau Pinang, Peninsular Malaysia is the sister species to the swamp-dwelling species S. sibuensis from Pulau Sibu, Johor and Singapore and that these two are also embedded in the genus Tytthoscincus. By transferring the two Peninsular Malaysian clades of Sphenomorphus into the genus Tytthoscincus, the monophyly of the latter is maintained. The new species T. panchorensis sp. nov. can be distinguished from all other species of Tytthoscincus by having a unique combination of morphological and color pattern characteristics.
    Matched MeSH terms: Lizards/genetics*
  9. Sumarli A, Grismer LL, Wood PL, Ahmad AB, Rizal S, Ismail LH, et al.
    Zootaxa, 2016 Oct 02;4173(1):29-44.
    PMID: 27701201 DOI: 10.11646/zootaxa.4173.1.3
    Recently discovered populations of skinks of the genus Sphenomorphus from central Peninsular Malaysia represent a new species, S. sungaicolus sp. nov., and the first riparian skink known from Peninsular Malaysia. Morphological analyses of an earlier specimen reported as S. tersus from the Forest Research Institute of Malaysia (FRIM), Selangor indicate that it too is the new riparian species S. sungaicolus sp. nov. Additionally, two specimens from the Tembat Forest Reserve, Hulu Terengganu, Kelantan and another from Ulu Gombak, Selangor have been diagnosed as new the species. The latter specimen remained unidentified in the Bernice Pauahi Bishop Museum, Honolulu, Hawaii since its collection in June 1962. Morphological and molecular analyses demonstrate that S. sungaicolus sp. nov. forms a clade with the Indochinese species S. maculatus, S. indicus, and S. tersus and is the sister species of the latter. Sphenomorphus sungaicolus sp. nov. can be differentiated from all other members of this clade by having a smaller SVL (66.5-89.6 mm); 39-44 midbody scale rows; 72-81 paravertebral scales; 74-86 ventral scales; a primitive plantar scale arrangement; and 20-22 scale rows around the tail at the position of the 10th subcaudal.
    Matched MeSH terms: Lizards/genetics
  10. Grismer LL, Belabut DM, Quah ES, Onn CK, Wood PL
    Zootaxa, 2014;3755:434-46.
    PMID: 24869831 DOI: 10.11646/zootaxa.3755.5.3
    A new species of Bent-toed Gecko Cyrtodactylus guakanthanensis sp. nov. of the C. sworderi complex is described from a limestone forest in Perak, Peninsular Malaysia whose karst formations at the type locality are within an active quarry. Cyrtodactylus guakanthanensis sp. nov. can be distinguished from all other Sundaland species by having the following suite of character states: adult SVL 77.7-82.2 mm; moderately sized, conical, weakly keeled, body tubercles; tubercles present on occiput, nape, and limbs, and extend posteriorly beyond base of tail; 37-44 ventral scales; no transversely enlarged, median, subcaudal scales; proximal subdigital lamellae transversely expanded; 19-21 subdigital lamellae on fourth toe; abrupt transition between posterior and ventral femoral scales; enlarged femoral scales; no femoral or precloacal pores; precloacal groove absent; wide, dark postorbital stripes from each eye extending posteriorly to the anterior margin of the shoulder region thence forming a transverse band across the anterior margin of the shoulder region; and body bearing five (rarely four) wide, bold, dark bands. Destruction of the karst microhabitat and surrounding limestone forest will extirpate this new species from the type locality and perhaps drive it to complete extinction given that it appears to be restricted to the particular microhabitat structure of the type locality and is not widely distributed throughout the karst formations. As with plants and invertebrates, limestone forests are proving to be significant areas of high herpetological endemism and should be afforded special conservation status rather than turned into cement.
    Matched MeSH terms: Lizards/genetics
  11. Grismer LL, Wood PL, Anuar S, Quah ES, Muin MA, Mohamed M, et al.
    Zootaxa, 2014;3786:359-81.
    PMID: 24869541 DOI: 10.11646/zootaxa.3786.3.6
    An integrative taxonomic analysis of three newly discovered populations of the gekkonid genus Cyrtodactylus Gray from Merapoh, Pahang; Gunung Stong, Kelantan; and Gunung Tebu, Terengganu indicate they are part of the C. pulchellus complex and each is a new species and thusly named Cyrtodactylus sharkari sp. nov., C. jelawangensis sp. nov., and C. timur sp. nov., respectively. Each species bears a unique suite of morphological and color pattern characters separating them from each other and all other nominal species in the C. pulchellus complex. Their phylogenetic relationships to each other and other species in the C. pulchellus complex were unexpected in that they are not in accordance with the general distribution of the species in this complex, underscoring the intricate historical biogeography of the Thai-Malay Peninsula. These descriptions highlight our current lack of knowledge concerning the herpetological diversity and distribution of species in northeastern Peninsular Malaysia.
    Matched MeSH terms: Lizards/genetics*
  12. Yan J, Tian C, Zhou J, Bauer AM, Lee Grismer L, Zhou K
    Mitochondrial DNA, 2014 Jun;25(3):181-2.
    PMID: 23631365 DOI: 10.3109/19401736.2013.792066
    We sequenced the complete mitochondrial genome of the Tioman Island rock gecko, Cnemaspis limi, which is known as an endemic species to Malaysia. The complete mitogenome is 16,680 bp in size, consisting of 37 genes coding for 13 proteins, 22 transfer RNAs, two ribosomal RNAs and one control region. The A + T content of the overall base composition of H-strand is 53.09% (T: 23.20%, C: 32.48%, A: 29.89% and G: 14.43%). The major non-coding region (control region) is 1254 bp in length with the A + T content of 55.09% and four replicates of a 76-bp repeat within this region.
    Matched MeSH terms: Lizards/genetics*
  13. Davis HR, Chan KO, Das I, Brennan IG, Karin BR, Jackman TR, et al.
    Mol Phylogenet Evol, 2020 06;147:106785.
    PMID: 32135306 DOI: 10.1016/j.ympev.2020.106785
    The gekkonid genus Cyrtodactylus is a highly diverse group of lizards (280 + species), which covers an expansive geographic range. Although this genus has been the focus of many taxonomic and molecular systematic studies, species on the Southeast Asian island of Borneo have remained understudied, leading to an unclear evolutionary history with cascading effects on taxonomy and biogeographic inferences. We assembled the most comprehensive multilocus Bornean dataset (one mitochondrial and three nuclear loci) that included 129 novel sequences and representatives from each known Cyrtodactylus species on the island to validate taxonomic status, assess species diversity, and elucidate biogeographic patterns. Our results uncovered a high proportion of cryptic diversity and revealed numerous taxonomic complications, especially within the C. consobrinus, C. malayanus, and C. pubisulcus groups. Comparisons of pairwise genetic distances and a preliminary species delimitation analysis using the Automatic Barcode Gap Discovery (ABGD) method demonstrated that some wide-ranging species on Borneo likely comprise multiple distinct and deeply divergent lineages, each with more restricted distributional ranges. We also tested the prevailing biogeographic hypothesis of a single invasion from Borneo into the Philippines. Our analyses revealed that Philippine taxa were not monophyletic, but were likely derived from multiple separate invasions into the geopolitical areas comprising the Philippines. Although our investigation of Bornean Cyrtodactylus is the most comprehensive to-date, it highlights the need for expanded taxonomic sampling and suggests that our knowledge of the evolutionary history, systematics, and biogeography of Bornean Cyrtodactylus is far from complete.
    Matched MeSH terms: Lizards/genetics*
  14. Grismer LL, Wood PL, Anuar S, Davis HR, Cobos AJ, Murdoch ML
    Zootaxa, 2016 Jan 04;4061(1):1-17.
    PMID: 27395475 DOI: 10.11646/zootaxa.4061.1.1
    A new species of Bent-toed Gecko, Cyrtodactylus gunungsenyumensis sp. nov. of the sworderi complex, is described from Hutan Lipur Gunung Senyum, Pahang, Peninsular Malaysia and is differentiated from all other species in the sworderi complex by having a unique combination of characters including a maximum SVL of 74.7 mm; low, rounded, weakly keeled, body tubercles; 34-40 paravertebral tubercles; weak ventrolateral body fold lacking tubercles; 38-41 ventral scales; an abrupt transition between the posterior and ventral femoral scales; 20-23 subdigital lamellae on the fourth toe; enlarged femoral scales; no femoral or precloacal pores; no precloacal groove; wide caudal bands; and an evenly banded dorsal pattern. Cyrtodactylus gunungsenyumensis sp. nov. is a scansorial, karst forest-adapted specialist endemic to the karst ecosystem surrounding Gunung Senyum and occurs on the vertical walls of the limestone towers as well as the branches, trunks, and leaves of the vegetation in the associated karst forest. Cyrtodactylus gunungsenyumensis sp. nov. is the seventh species of karst forest-adapted Cyrtodactylus and the sixteenth endemic species of karst ecosystem reptile discovered in Peninsular Malaysia in the last seven years from only 12 different karst forests. This is a clear indication that many species remain to be discovered in the approximately 558 isolated karst ecosystems in Peninsular Malaysia not yet surveyed. These data continue to underscore the importance of karst ecosystems as reservoirs of biodiversity and microendemism and that they constitute an important component of Peninsular Malaysia's natural heritage and should be protected from the quarrying interests of foreign industrial companies.
    Matched MeSH terms: Lizards/genetics
  15. Grismer LL, Wood PL, Anuar S, Grismer MS, Quah ES, Murdoch ML, et al.
    Zootaxa, 2016 Apr 25;4105(5):401-29.
    PMID: 27394789 DOI: 10.11646/zootaxa.4105.5.1
    A new species of limestone cave-adapted gecko of the Cyrtodactylus pulchellus complex, C. hidupselamanya sp. nov., is described from an isolated karst formation at Felda Chiku 7, Kelantan, Peninsular Malaysia. This formation is scheduled to be completely quarried for its mineral content. From what we know about the life history of C. hidupselamanya sp. nov., this will result in its extinction. A new limestone forest-adapted species, C. lenggongensis sp. nov., from the Lenggong Valley, Perak was previously considered to be conspecific with C. bintangrendah but a re-evaluation of morphological, color pattern, molecular, and habitat preference indicates that it too is a unique lineage worthy of specific recognition. Fortunately C. lenggongensis sp. nov. is not facing extinction because its habitat is protected by the UNESCO Archaeological Heritage of the Lenggong Valley due to the archaeological significance of that region. Both new species can be distinguished from all other species of Cyrtodactylus based on molecular evidence from the mitochondrial gene ND2 and its flanking tRNAs as well as having unique combinations of morphological and color pattern characteristics. Using a time-calibrated BEAST analysis we inferred that the evolution of a limestone habitat preference and its apparently attendant morphological and color pattern adaptations evolved independently at least four times in the C. pulchellus complex between 26.1 and 0.78 mya.
    Matched MeSH terms: Lizards/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links