OBJECTIVE: The goal of the present study was to assess the antiproliferative and apoptosis-inducing effects of stem parts of Elytranthe parasitica (L.) Danser (EP) on colorectal cancer and identify the bioactive phytochemicals.
MATERIAL AND METHODS: EP methanol extract (EP.M) and its subsequent fractions were screened for antiproliferative activity in human colorectal carcinoma HCT 116 cell line. Phytocomposition of the bioactive fraction was analyzed by GC-MS. Further, apoptotic induction and cell cycle arrest was assessed in the most bioactive fractions.
RESULTS: EP.DEE (Diethyl Ether) fraction and a subsequent fraction derived by column chromatography, Fraction 3A (FR 3A) significantly inhibited the proliferation of HCT 116 cells (P
AIM OF THE STUDY: To evaluate the anti-inflammatory activity as well as the preliminary mechanism of S. ferruginea parasitizing on Tecoma stans.
MATERIALS AND METHODS: The anti-inflammatory capability of freeze-dried stem aqueous extract was assessed via inhibition of inflammatory cytokines interleukin- (IL-) 1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) production in lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulated RAW 264.7 macrophages. The underlying anti-inflammatory mechanism was deciphered through reverse transcriptase and real time quantitative polymerase chain reactions (RT-PCR and qPCR) for inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and TNF-α mRNA expression.
RESULTS: The results exhibited that aqueous extract of freeze-dried S. ferruginea stem sample concentration-dependently inhibited IL-1β protein production along with the down regulation of iNOS and IL-1β mRNA expression. Moreover, it significantly suppressed the protein release of IL-6 and IL-10 in a concentration-dependent manner. However, it slightly reduced TNF-α at higher sample concentration (250 μg/mL) without affecting the mRNA expression levels of COX-2 and TNF-α.
CONCLUSIONS: This study suggests that S. ferruginea parasitizing on Tecoma stans exerted anti-inflammatory capability attributed to inhibition of iNOS and IL-1β mRNA expression, NO creation, IL-1β, IL-6, IL-10, and TNF-α protein production, indicating this plant might be a useful plant-derived candidate against inflammation.