In the present study, we investigated the physicochemical and functional properties of lotus seed flour exposed to low and high doses of gamma-radiation (0-30 kGy; the dose recommended for quarantine and hygienic purposes). The results indicated raw seed flour to be rich in nutrients with minimal quantities of antinutritional factors. Irradiation resulted in a dose-dependent increase in some of the proximal constituents. The raw and gamma-irradiated seeds meet the Food and Agricultural Organization-World Health Organization recommended pattern of essential amino acids. Some of the antinutritional factors (phytic acid, total phenolics, and tannins) were lowered with gamma-irradiation, while the seed flours were devoid of lectins, L-3,4-dihydroxyphenylalanine, and polonium-210. The functional properties of the seed flour were significantly improved with gamma-radiation. gamma-radiation selectively preserved or improved the desired nutritional and functional traits of lotus seeds, thus ensuring a safe production of appropriate nutraceutically valued products.
Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials.
The main objective of the present study was to produce crispy deep fried chips from lotus rhizome with acceptable organoleptic qualities. Effects of three different frying temperatures (180, 190 and 200°C, for 15-20 sec) on the overall qualities (proximate composition, texture and sensory) of lotus rhizome chips were determined. Prior to frying, freshly procured rhizomes were sliced uniformly (thickness of ~2.5 mm, diameter ~ 5.2mm), blanched in hot water (85°C for 3.5 min) and dried in a hot air vacuum oven (60°C, 24 h). Results on textural studies showed force required to break the chips to be dependent on temperature. Sensory quality results revealed high acceptability for chips produced by frying at 200°C. This reported work being a preliminary study, further research works is warranted to standardize the protocols for industrial scale production of lotus rhizome chips, with improved taste and flavour, keeping in mind the safety and quality issues.
In vitro direct regeneration of Nelumbo nucifera Gaertn. was successfully achieved from immature explants (yellow plumule) cultured on a solid MS media supplemented with combinations of 0.5 mg/L BAP and 1.5 mg/L NAA which resulted in 16.00 ± 0.30 number of shoots per explant and exhibited a new characteristic of layered multiple shoots, while normal roots formed on the solid MS basal media. The double-layered media gave the highest number of shoots per explant with a ratio of 2 : 1 (liquid to solid) with a mean number of 16.67 ± 0.23 shoots per explant with the formation of primary and secondary roots from immature explants. In the study involving light distance, the tallest shoot (16.67 ± 0.23 mm) obtained from the immature explants was at a light distance of 200 mm from the source of inflorescent light (1000 lux). The plantlets were successfully acclimatized in clay loam soil after 8 months being maintained under in vitro conditions.
Genetic structure can be altered by chemical mutagenesis, which is a common method applied in molecular biology and genetics. Second-generation sequencing provides a platform to reveal base alterations occurring in the whole genome due to mutagenesis. A model legume, Lotus japonicus ecotype Miyakojima, was chemically mutated with alkylating ethyl methanesulfonate (EMS) for the scanning of DNA lesions throughout the genome. Using second-generation sequencing, two individually mutated third-generation progeny (M3, named AM and AS) were sequenced and analyzed to identify single nucleotide polymorphisms and reveal the effects of EMS on nucleotide sequences in these mutant genomes. Single-nucleotide polymorphisms were found in every 208 kb (AS) and 202 kb (AM) with a bias mutation of G/C-to-A/T changes at low percentage. Most mutations were intergenic. The mutation spectrum of the genomes was comparable in their individual chromosomes; however, each mutated genome has unique alterations, which are useful to identify causal mutations for their phenotypic changes. The data obtained demonstrate that whole genomic sequencing is applicable as a high-throughput tool to investigate genomic changes due to mutagenesis. The identification of these single-point mutations will facilitate the identification of phenotypically causative mutations in EMS-mutated germplasm.
Salmonella has been reported to be presence both in raw and processed foods worldwide. In this study, the prevalence, quantification and antibiotic susceptibility of Salmonella isolated from raw vegetables or locally known as ulam such as asiatic pennywort (Centella asiatica (L) Urb), water dropwort (Oenanthe javanica (Blume) DC), long bean (Vigna sinensis EndL), and winged bean (Psophocarpus tetragonolobus (L) DC) obtained from retail markets in Selangor, Malaysia were carried out. From 96 samples tested, the overall prevalence of Salmonella spp. was 97.9%, Salmonella Enteritidis was 54.2% and Salmonella Typhimurium was 82.3% respectively. Samples were contaminated with Salmonella ranging from < 3 to 2400 MPN/g. Salmonella Enteritidis and Salmonella Typhimurium isolates obtained from the raw vegetables (ulam) were found to exhibit high resistance against ampicillin (100%), erythromycin (100%), amoxicillin/clavunic acid (81.3%), cephalothin (75%), streptomycin (50%) and ciprofloxacin (50%). All Salmonella isolates showed multi drug resistant (MDR) profile with each isolate being resistant to 3 or more antibiotics. The multiple antibiotic resistance (MAR) index of Salmonella isolates ranged from 0.27 to 0.55 for Salmonella Enteritidis and 0.27 to 0.82 for Salmonella Typhimurium. The presence of Salmonella on raw vegetables (ulam) and high antibiotic resistance isolates indicated that raw vegetables could be contaminated and thus imposes possible health risk to local consumers.
Radiation processing has been employed successfully for value addition of food and agricultural products. Preliminary studies were undertaken to evaluate the changes induced by ionizing radiation (up to 30 kGy), in the form of gamma irradiation and electron beam irradiation, on some quality attributes and nutritive values of nutraceutically valued lotus seeds. Significant loss in seed firmness was recorded between control and irradiated seeds, irrespective of radiation source. Similarly, the specific viscosity of irradiated lotus seeds decreased significantly up to a dose of 7.5 kGy. Starch increased after exposure to gamma or electron beam irradiation, whereas the total phenolic contents were decreased. Gamma irradiation revealed an enhancement in protein, while the electron beam showed a decrease. Partial oxidation of the seeds during radiation treatments might have occurred as evidenced from the decomposition profiles (thermogravimetry) during heating. It is evident that ionizing radiation brought about significant and variable changes in the quality and nutritive values of lotus seed. Further exploration of this technology for safety and quality is warranted.
A survey was conducted to investigate the level of consumption of ‘ulam’ in Selangor State among 252 adults (> 17 years) (male 28.6%, female 71.4%) of major ethnics (Malays-51.6%; Chinese-30.5%; Indians-17.5%) with the mean age of 42.7 ± 13.9 years. Consumption data were collected using 24 hours duplicate samples together with questionnaire on perceptions of ‘ulam.’ Results showed that ‘ulam’ was preferred by majority of the subjects (82.1%), especially amongst Malays (92.3%). A total of 52% of the subjects consumed partially or boiled ‘ulam.’ Factors that affect their preferences on ‘ulam’ were the perception of therapeutic effects of the ‘ulam’ towards health, its good taste and unique
aroma. The most consumed ‘ulam’ were cucumber (Cucumis sativus) (60.6%) ‘kacang botol’ (Psophocarpus tetragonolobus) (33%), Indian pennywort (Hydrocotyle asiatica) (31.5%), lettuce (Lactuca sativa) (27.6%), ‘petai’ (Parkia speciosa) (29%) and ‘ulam raja’ (Cosmos caudatus) (21.9%). The most preferred partially or boiled ‘ulam’
were tapioca shoot (Manihot esculenta) (31.5%), ocra (Hibiscus esculentus) (12.5%) and ‘jantung pisang’ (Musa sapientum) (20.1%). There was no significant difference (P > 0.05) amongst the three different ethnic groups on the consumption of ‘ulam’ and the median for total intake per day was within the range of 30-39 g/day. Ulam is a potential
source for increasing vegetable consumption to meet recommendation by World Health Organization (WHO), which is 400 g per day.
Keywords: Adults; perception; ‘ulam;’ Selangor State