Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Singh R, Singh HJ, Sirisinghe RG
    Br J Sports Med, 1995 Mar;29(1):13-5.
    PMID: 7788209
    Maximal oxygen consumption (VO2max) and maximal workload attained (WLmax) were determined in 28 Malaysian dragon boat rowers who were exercised to exhaustion on an arm ergometer. Mean VO2max was 2.75 l min-1 at a mean WLmax of 195.5 W. Anaerobic endurance power of the arms, determined by cranking at 100 RPM at a workload of 400 W and the time taken to maintain the cadence until it fell to 75 RPM, was 34.9(+/- 2.3) s. Leg performance, as determined by standing long jump and vertical jump, was 140.0(+/- 4.5) kg m and 100.3(+/- 3.1) kg m s-1 respectively. Right hand grip strength was significantly (p < 0.001) greater than the left hand. Percentage body fat of the rowers was 11.8(+/- 0.6)%. These values represent the first measurements of their kind performed on dragon boat rowers in Malaysia.
    Matched MeSH terms: Muscle, Skeletal/physiology
  2. Amalourde A, Vinayaga P, Naveed N, Choon SK, Zaleha O
    Med J Malaysia, 2004 Dec;59 Suppl F:8-13.
    PMID: 15941154
    In our centre the non-availability computerized exercise machines limits the objective monitoring of strength rehabilitation. We undertook this research programme to objectively measure triceps muscle strength by interfacing NORSK-Gym machine with accelerometer and positional transducers to a computer. This data was tabulated and processed using Microsoft Excel. The positional transducer was first calibrated and it showed an excellent Pearson Correlation Coefficients against a standard metric reading (r = 0.9999). Peak Force was used as a test parameter for isotonic triceps muscle strength measurements. The criterion-referenced validity was established as the peak forces measured using the accelerometer and positional transducer demonstrated identical Peak Forces (r = 0.94). Analysis of our mean Peak Force measurements using non-biological force as well as the intra-individual reproducibility demonstrated excellent Pearson Correlation Coefficients (r) = 0.982-0.998 and 0.929-0.972 respectively. This computerized adaptation of the NORSK-Gym machine produced an objective, valid and reproducible triceps muscle strength measurement.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  3. Zakaria ZA, Sulaiman MR, Mat Jais AM, Somchit MN
    Can J Physiol Pharmacol, 2005 Jul;83(7):635-42.
    PMID: 16091789
    The effects of an aqueous supernatant of haruan (ASH) (Channa striatus) fillet extract on various antinociception receptor system activities were examined using a mouse abdominal-constriction model. Mice that were pretreated with distilled water, s.c., followed 10 min later by administration of 25%, 50%, and 100% concentration ASH, s.c., produced a significant concentration-dependent antinociceptive activity (p < 0.001). Pretreatment with naloxone (0.3, 1.0, and 3.0 mg/kg body mass), 10 min before ASH administration, failed to block the extract antinociception. Pretreatment of the 100% concentration ASH with mecamylamine (5 mg/kg), pindolol (10 mg/kg), and haloperidol (1 mg/kg) also did not cause any significant change in its antinociception. However, pretreatment with atropine (5 mg/kg), bicuculline (10 mg/kg), phenoxybenzamine (10 mg/kg), and methysergide (5 mg/kg) were found to reverse ASH antinociception. Based on the above findings, the ASH is suggested to contain different types of bioactive compounds that act synergistically on muscarinic, GABAA, alpha-adrenergic, and serotonergic receptor systems to produce the observed antinociception.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  4. Lim SY, Mason WP, Young NP, Chen R, Bower JH, McKeon A, et al.
    Arch. Neurol., 2009 Oct;66(10):1285-7.
    PMID: 19822786 DOI: 10.1001/archneurol.2009.203
    OBJECTIVE:
    To describe and provide audiovisual documentation of a syndrome of polymyoclonus, laryngospasm, and cerebellar ataxia associated with adenocarcinoma and multiple neural cation channel autoantibodies.

    DESIGN:
    Case report with video.

    SETTING:
    University hospitals. Patient A 69-year-old woman presented with subacute onset of whole-body tremulousness and laryngospasm attributed to gastroesophageal reflux.

    RESULTS:
    Further evaluation revealed polymyoclonus, cerebellar ataxia, and laryngospasm suspicious of an underlying malignant neoplasm. Surface electromyography of multiple limb muscles confirmed the presence of polymyoclonus. The patient was seropositive for P/Q-type voltage-gated calcium channel antibody; subsequently, whole-body fluorine 18 fluorodeoxyglucose positron emission tomography and cervical lymph node biopsy revealed widespread metastatic adenocarcinoma. Follow-up serologic evaluation revealed calcium channel antibodies (P/Q type and N type) and potassium channel antibody.

    CONCLUSIONS:
    We highlight the importance of recognizing polymyoclonus. To our knowledge, this is also the first description of a syndrome of polymyoclonus, laryngospasm, and ataxia associated with adenocarcinoma and these cation channel antibodies.
    Matched MeSH terms: Muscle, Skeletal/physiology
  5. Amiri-Khorasani M, Abu Osman NA, Yusof A
    J Strength Cond Res, 2011 Apr;25(4):1177-81.
    PMID: 20838249 DOI: 10.1519/JSC.0b013e3181d6508c
    This study investigated the number of trials necessary to obtain optimal biomechanical responses in 10 consecutive soccer instep kicks. The kicking motions of dominant legs were captured from 5 experienced and skilled adult male soccer players (height: 184.60 ± 4.49 cm; mass: 80 ± 4.24 kg; and age: 25.60 ± 1.14 years) using a 3D infrared high-speed camera at 200 Hz. Some of the important kinematics and kinetics parameters are maximum thigh angular velocity, maximum lower leg angular velocity, maximum of thigh moment, maximum lower leg moment at forward and impact phases, and finally maximum ball velocity after impact selected to be analyzed. There was a significant decrease of ball velocity between the first and the fifth kick and the subsequent kicks. Similarly, the lower leg angular velocity showed a significant decrease after the fifth kick and thereafter. Compared with the first kick, the thigh angular velocity has been shown to decrease after the sixth kick and thereafter, and the thigh moment result of the sixth kick was significantly lower when compared with the first kick. Moreover, the lower leg moment result of the fourth kick was significantly lower in comparison with the first kick. In conclusion, it seems that 5 consecutive kicks are adequate to achieve high kinematics and kinetics responses and selecting more than 5 kicks does not result in any high biomechanical responses for analysis.
    Matched MeSH terms: Muscle, Skeletal/physiology
  6. Amiri-Khorasani M, Abu Osman NA, Yusof A
    J Strength Cond Res, 2011 Jun;25(6):1647-52.
    PMID: 21358428 DOI: 10.1519/JSC.0b013e3181db9f41
    The purpose of this study was to examine the effects of static and dynamic stretching within a pre-exercise warm-up on hip dynamic range of motion (DROM) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 professional adult male soccer players (height: 180.38 ± 7.34 cm; mass: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 3-dimensional digital video cameras at 50 Hz. Hip DROM at backward, forward, and follow-through phases (instep kick phases) after different warm-up protocols consisting of static, dynamic, and no-stretching on 3 nonconsecutive test days were captured for analysis. During the backswing phase, there was no difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method. There was a significant difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method during (a) the forward phase with p < 0.03, (b) the follow-through phase with p < 0.01, and (c) all phases with p < 0.01. We concluded that professional soccer players can perform a higher DROM of the hip joint during the instep kick after dynamic stretching incorporated in warm-ups, hence increasing the chances of scoring and injury prevention during soccer games.
    Matched MeSH terms: Muscle, Skeletal/physiology
  7. Ajit Singh DK, Bailey M, Lee R
    Muscle Nerve, 2011 Jul;44(1):74-9.
    PMID: 21488056 DOI: 10.1002/mus.21998
    Loss of lumbar extensor muscle strength and fatigue resistance may contribute to functional disability.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  8. Zadry HR, Dawal SZ, Taha Z
    Int J Occup Saf Ergon, 2011;17(4):373-84.
    PMID: 22152503
    A study was conducted to investigate the effects of repetitive light tasks of low and high precision on upper limb muscles and brain activities. Surface electromyography (EMG) and electroencephalography (EEG) were used to measure the muscle and brain activity of 10 subjects. The results show that the root-mean-square (RMS) and mean power frquency (MPF) of the muscle activity and the mean power of the EEG alpha bands were higher on the high-precision task than on the low-precision one. There was also a high and significant correlation between upper limb muscle and brain activity during the tasks. The longer the time and the more precise the task, the more the subjects become fatigued both physically and mentally. Thus, these results could be potentially useful in managing fatigue, especially fatique related to muscle and mental workload.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  9. Ahamed NU, Sundaraj K, Poo TS
    Proc Inst Mech Eng H, 2013 Mar;227(3):262-74.
    PMID: 23662342
    This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.
    Matched MeSH terms: Muscle, Skeletal/physiology
  10. Aboodarda SJ, Yusof A, Abu Osman NA, Thompson MW, Mokhtar AH
    Int J Sports Physiol Perform, 2013 Mar;8(2):181-7.
    PMID: 23428490
    To identify the effect of additional elastic force on the kinetic and kinematic characteristics, as well as the magnitude of leg stiffness, during the performance of accentuated countermovement jumps (CMJs).
    Matched MeSH terms: Muscle, Skeletal/physiology
  11. Chowdhury RH, Reaz MB, Ali MA, Bakar AA, Chellappan K, Chang TG
    Sensors (Basel), 2013;13(9):12431-66.
    PMID: 24048337 DOI: 10.3390/s130912431
    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  12. Islam MA, Sundaraj K, Ahmad RB, Ahamed NU
    PLoS One, 2013;8(3):e58902.
    PMID: 23536834 DOI: 10.1371/journal.pone.0058902
    BACKGROUND: Mechanomyography (MMG) has been extensively applied in clinical and experimental practice to examine muscle characteristics including muscle function (MF), prosthesis and/or switch control, signal processing, physiological exercise, and medical rehabilitation. Despite several existing MMG studies of MF, there has not yet been a review of these. This study aimed to determine the current status on the use of MMG in measuring the conditions of MFs.

    METHODOLOGY/PRINCIPAL FINDINGS: Five electronic databases were extensively searched for potentially eligible studies published between 2003 and 2012. Two authors independently assessed selected articles using an MS-Word based form created for this review. Several domains (name of muscle, study type, sensor type, subject's types, muscle contraction, measured parameters, frequency range, hardware and software, signal processing and statistical analysis, results, applications, authors' conclusions and recommendations for future work) were extracted for further analysis. From a total of 2184 citations 119 were selected for full-text evaluation and 36 studies of MFs were identified. The systematic results find sufficient evidence that MMG may be used for assessing muscle fatigue, strength, and balance. This review also provides reason to believe that MMG may be used to examine muscle actions during movements and for monitoring muscle activities under various types of exercise paradigms.

    CONCLUSIONS/SIGNIFICANCE: Overall judging from the increasing number of articles in recent years, this review reports sufficient evidence that MMG is increasingly being used in different aspects of MF. Thus, MMG may be applied as a useful tool to examine diverse conditions of muscle activity. However, the existing studies which examined MMG for MFs were confined to a small sample size of healthy population. Therefore, future work is needed to investigate MMG, in examining MFs between a sufficient number of healthy subjects and neuromuscular patients.

    Matched MeSH terms: Muscle, Skeletal/physiology*
  13. Rusmili MR, Yee TT, Mustafa MR, Othman I, Hodgson WC
    Toxins (Basel), 2014 Mar;6(3):1036-48.
    PMID: 24625762 DOI: 10.3390/toxins6031036
    Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.
    Matched MeSH terms: Muscle, Skeletal/physiology
  14. Ahamed NU, Sundaraj K, Ahmad B, Rahman M, Ali MA, Islam MA
    Australas Phys Eng Sci Med, 2014 Mar;37(1):83-95.
    PMID: 24477560 DOI: 10.1007/s13246-014-0245-1
    Cricket bowling generates forces with torques on the upper limb muscles and makes the biceps brachii (BB) muscle vulnerable to overuse injury. The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal of the BB muscle during fast and spin delivery, during the seven phases of both types of bowling and the kinesiological interpretation of the bowling arm for muscle contraction mechanisms during bowling. A group of 16 male amateur bowlers participated in this study, among them 8 fast bowlers (FB) and 8 spin bowlers (SB). The root mean square (EMGRMS), the average sEMG (EMGAVG), the maximum peak amplitude (EMGpeak), and the variability of the signal were calculated using the coefficient of variance (EMGCV) from the BB muscle of each bowler (FB and SB) during each bowling phase. The results demonstrate that, (i) the BB muscle is more active during FB than during SB, (ii) the point of ball release and follow-through generated higher signals than the other five movements during both bowling categories, (iii) the BB muscle variability is higher during SB compared with FB, (iv) four statistically significant differences (p<0.05) found between the bowling phases in fast bowling and three in spin bowling, and (v) several arm mechanics occurred for muscle contraction. There are possible clinical significances from the outcomes; like, recurring dynamic contractions on BB muscle can facilitate to clarify the maximum occurrence of shoulder pain as well as biceps tendonitis those are medically observed in professional cricket bowlers, and treatment methods with specific injury prevention programmes should focus on the different bowling phases with the maximum muscle effect. Finally, these considerations will be of particular importance in assessing different physical therapy on bowler's muscle which can improve the ball delivery performance and stability of cricket bowlers.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  15. Reza SM, Ahmad N, Choudhury IA, Ghazilla RA
    Sensors (Basel), 2014 Mar 04;14(3):4342-63.
    PMID: 24599193 DOI: 10.3390/s140304342
    Human motion is a daily and rhythmic activity. The exoskeleton concept is a very positive scientific approach for human rehabilitation in case of lower limb impairment. Although the exoskeleton shows potential, it is not yet applied extensively in clinical rehabilitation. In this research, a fuzzy based control algorithm is proposed for lower limb exoskeletons during sit-to-stand and stand-to-sit movements. Surface electromyograms (EMGs) are acquired from the vastus lateralis muscle using a wearable EMG sensor. The resultant acceleration angle along the z-axis is determined from a kinematics sensor. Twenty volunteers were chosen to perform the experiments. The whole experiment was accomplished in two phases. In the first phase, acceleration angles and EMG data were acquired from the volunteers during both sit-to-stand and stand-to-sit motions. During sit-to-stand movements, the average acceleration angle at activation was 11°-48° and the EMG varied from -0.19 mV to +0.19 mV. On the other hand, during stand-to-sit movements, the average acceleration angle was found to be 57.5°-108° at the activation point and the EMG varied from -0.32 mV to +0.32 mV. In the second phase, a fuzzy controller was designed from the experimental data. The controller was tested and validated with both offline and real time data using LabVIEW.
    Matched MeSH terms: Muscle, Skeletal/physiology
  16. Rusmili MR, Tee TY, Mustafa MR, Othman I, Hodgson WC
    Biochem Pharmacol, 2014 Mar 15;88(2):229-36.
    PMID: 24440452 DOI: 10.1016/j.bcp.2014.01.004
    Bungarus fasciatus is one of three species of krait found in Malaysia. Envenoming by B. fasciatus results in neurotoxicity due to the presence of presynaptic and postsynaptic neurotoxins. Antivenom, either monovalent or polyvalent, is the treatment of choice in systemically envenomed patients. In this study, we have isolated a postsynaptic neurotoxin which we named α-elapitoxin-Bf1b. This toxin has an approximate molecular weight of 6.9 kDa, with LCMS/MS data showing that it is highly homologous with Neurotoxin 3FTx-RI, a toxin identified in the Bungarus fasciatus venom gland transcriptome. α-Elapitoxin-Bf1b also shared similarity with short-chain neurotoxins from Laticauda colubrina and Pseudechis australis. α-Elapitoxin-Bf1b produced concentration- and time-dependent neurotoxicity in the indirectly-stimulated chick biventer cervicis muscle preparation, an effect partially reversible by repetitive washing of the preparation. The pA2 value for α-elapitoxin-Bf1b of 9.17 ± 0.64, determined by examining the effects of the toxin on cumulative carbacol concentration-response curves, indicated that the toxin is more potent than tubocurarine and α-bungarotoxin. Pre-incubation of Bungarus fasciatus monovalent and neuro polyvalent antivenom failed to prevent the neurotoxic effects of α-elapitoxin-Bf1b in the chick biventer cervicis muscle preparation. In conclusion, the isolation of a postsynaptic neurotoxin that cannot be neutralized by either monovalent and polyvalent antivenoms may indicate the presence of isoforms of postsynaptic neurotoxins in Malaysian B. fasciatus venom.
    Matched MeSH terms: Muscle, Skeletal/physiology
  17. Ibitoye MO, Hamzaid NA, Zuniga JM, Abdul Wahab AK
    Clin Biomech (Bristol, Avon), 2014 Jun;29(6):691-704.
    PMID: 24856875 DOI: 10.1016/j.clinbiomech.2014.04.003
    Previous studies have explored to saturation the efficacy of the conventional signal (such as electromyogram) for muscle function assessment and found its clinical impact limited. Increasing demand for reliable muscle function assessment modalities continues to prompt further investigation into other complementary alternatives. Application of mechanomyographic signal to quantify muscle performance has been proposed due to its inherent mechanical nature and ability to assess muscle function non-invasively while preserving muscular neurophysiologic information. Mechanomyogram is gaining accelerated applications in evaluating the properties of muscle under voluntary and evoked muscle contraction with prospects in clinical practices. As a complementary modality and the mechanical counterpart to electromyogram; mechanomyogram has gained significant acceptance in analysis of isometric and dynamic muscle actions. Substantial studies have also documented the effectiveness of mechanomyographic signal to assess muscle performance but none involved comprehensive appraisal of the state of the art applications with highlights on the future prospect and potential integration into the clinical practices. Motivated by the dearth of such critical review, we assessed the literature to investigate its principle of acquisition, current applications, challenges and future directions. Based on our findings, the importance of rigorous scientific and clinical validation of the signal is highlighted. It is also evident that as a robust complement to electromyogram, mechanomyographic signal may possess unprecedented potentials and further investigation will be enlightening.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  18. Dehghan F, Haerian BS, Muniandy S, Yusof A, Dragoo JL, Salleh N
    Scand J Med Sci Sports, 2014 Aug;24(4):e220-9.
    PMID: 24283470 DOI: 10.1111/sms.12149
    Relaxin is a hormone structurally related to insulin and insulin-like growth factor, which exerts its regulatory effect on the musculoskeletal and other systems through binding to its receptor in various tissues, mediated by different signaling pathways. Relaxin alters the properties of cartilage and tendon by activating collagenase. This hormone is also involved in bone remodeling and healing of injured ligaments and skeletal muscle. In this review, we have summarized the literature on the effect of relaxin in musculoskeletal system to provide a broad perspective for future studies in this field.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  19. Naish KR, Houston-Price C, Bremner AJ, Holmes NP
    Neuropsychologia, 2014 11;64:331-48.
    PMID: 25281883 DOI: 10.1016/j.neuropsychologia.2014.09.034
    Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity; (2) direction; and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  20. Islam MA, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    PLoS One, 2014;9(8):e104280.
    PMID: 25090008 DOI: 10.1371/journal.pone.0104280
    In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity.
    Matched MeSH terms: Muscle, Skeletal/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links