MATERIALS AND METHODS: Randomised controlled trial was conducted on STEMI patients who undergo PCI in two hospitals in Jakarta, 104 patients enrolled to this study, and 77 patients completed the trial. 37 patients were randomly assigned to receive colchicines (2 mg loading dose; 0.5 mg thereafter every 12 hour for 48 hours) while 40 patients received placebo. NLRP3 level was measured from venous blood at baseline (BL), after procedure (AP), dan 24-hour post procedure (24H).
RESULTS: No NLRP3 difference was observed initially between colchicine arm and placebo arm 38,69 and 39,0138, respectively (p >0.05). Measurement conducted at 24H, patients received colchicine demonstrate reduction in NLRP3 level (37.67), while placebo arm results increase in NLRP3 level (42.89) despite not statistically significant (p >0,05).
CONCLUSION: Colchicine addition to standard treatment of STEMI patients undergo PCI reduce NLRP3 level despite statistically insignificant.
METHODS: SPF grade 4-6-week-old Kunming rats were randomly divided into 5 groups including a blank group, sham-operated group, model group, acupuncture, and moxibustion (AnM) group, and positive group. A total of 10 rats were included in each group. The model group, the AnM group, and the positive group were prepared by ligating the left sciatic nerve. AnM group was used for acupuncture and moxibustion therapy intervention, and the positive group was rendered to quick-acting sciatica pills once a day for 7 days (3 courses of treatment). The blank group, sham-operated group, and model group were not treated. The changes in thermal and mechanical pain thresholds were observed before and after the operation, and the morphological changes of the dorsal horn of the spinal cord in the lumbosacral region of the rats in each group were observed by HE staining after the courses of treatment finished. The contents of IL-1β, IL-6, IL-18, and TNF-α were measured by ELISA and the expressions of NOX1, NOX2, NOX4, and NLRP3 genes were detected by RT-qPCR while the protein expressions of NOX1, NOX2, NOX4 and NLRP3 were analyzed by Western blotting.
RESULTS: The AnM and positive group showed a significant increase in thermal and mechanical pain thresholds after treatment, while there was no significant change in the model group. As compared to the control group, the contents of IL- 1β, IL-6, IL-18, and TNF-α, as well as the relative expressions of NOX1, NOX2, NOX4, and NLRP3 genes were significantly increased in the model group (P
METHODS: The effects of LPS-induced NLRP3 activation in the presence or absence of MCC950, NLRP3-specific inhibitor, was tested on a panel of three pancreatic cancer cell lines (SW1990, PANC1 and Panc10.05). Western blotting, cell viability kits and ELISA kits were used to examine the effects of LPS-induced NLRP3 activation and inhibition by MCC950 on NLRP3 expression, cell viability, caspase-1 activity and cytokine IL-1β, respectively.
RESULTS: LPS-induced inflammation in the presence of ATP activates NLRP3 that subsequently increases pancreatic cancer cell proliferation by increasing caspase-1 activity leading to overall production of IL-1β. The inhibition of the NLRP3 inflammasome activation via the specific NLRP3 antagonist MCC950 was able to reduce the cell viability of pancreatic cancer cells. However, the efficacy of MCC950 varies between cell types which is most probably due to the difference in ASC expressions which have a different role in inflammasome activation.
CONCLUSION: There is a dynamic interaction between inflammasome that regulates inflammasome-mediated inflammation in pancreatic adenocarcinoma cells.